Ch 2 Motion in One Dimension

- I) Displacement & Velocity
 - A) One Dimension
 - 1) Simple
 - B) Frame of Reference
 - C) Displacement
 - 1) equation

 $\Delta x = x_f - x_i$

- 2) position (x)
- 3) distance the length of the route an object travels
- 4) units
 - (a) SI meter (m)
 - (b) any unit for length
- 5) sign direction
- D) Average Velocity
 - 1) equation

 $v_{ave} = \frac{\Delta x}{\Delta t}$

- 2) time interval (Δ t) how much time passes
- 3) units
 - (a) SI m/s
 - (b) length / time (km/h, mph)
- 4) Direction
 - (a) Velocity is a <u>vector</u> and so has magnitude <u>and direction</u>
- 5) Speed
 - (a) equation

```
s = \frac{distance}{time}
```

- E) Position vs. Time Graph
 - 1) Two points
 - (a) first point = Initial position and time
 - (b) second point = Final position and time
 - 2) Slope
 - (a) Instantaneous Velocity

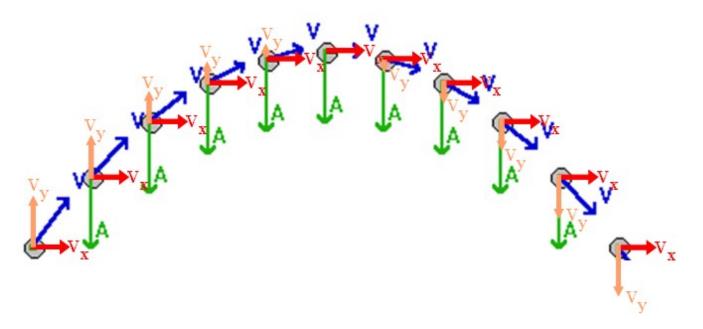
$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{\Delta x (\Delta position)}{\Delta t} = v_{ave}$$

- II) Acceleration rate of change in velocity
 - A) Equation

$$a_{ave} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

- B) <u>Vector</u> measures both magnitude (size) and direction
 - 1) (velocity is a vector vs. speed which is a <u>scalar</u>)
 - 2) Changes in speed, direction, or both count as acceleration

C) Signs


- 1) (+) vel. means object is moving in (+) direction
 - (a) (+) vel. w/ (-) acc. means moving (+), but *slowing down*
 - (b) (-) vel. w/ (+) acc. means moving (-), but *slowing down*
 - (c) (+) vel. w/ (+) acc. means moving (+), and speeding up
 - (d) (-) vel. w/ (-) acc. means moving (-), and speeding up
- D) Velocity vs. Time Graph
 - 1) Interpreting slope:
 - (+) slope means (+) acceleration
 - (-) slope means (-) acceleration
 - if the line is above v = 0 (y=0), velocity is positive
 - if the line is below v = 0 (y=0), velocity is negative
- E) Calculations with constant acceleration
 - 1) Derive kinematics equations:

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x = \frac{1}{2}(\nu_i + \nu_f)\Delta t$	$\Delta x = \frac{1}{2}\nu_f \Delta t$
$v_f = v_i + a\Delta t$	$v_f = a \Delta t$
$\Delta x = \nu_i \Delta t + \frac{1}{2}a(\Delta t)^2$	$\Delta x = \frac{1}{2}a(\Delta t)^2$
$v_f^2 = v_i^2 + 2a\Delta x$	$v_f^2 = 2a\Delta x$

- 2) Problem-solving strategies
 - List variables (both given and target)
 - Find an equation (or system of equations) that includes only constant and relevant variables (known and unknown)
- III) Falling objects
 - A) Freefall an object falling with only the force of gravity acting on it
 - B) The acceleration due to gravity on earth $(a_{gravity})$ is called g (instead of a_g)

1) g = -9.81m/s²

- C) Free-fall acceleration
 - 1) (Ignoring the effects of air resistance) all objects accelerate due to gravity at the same rate
 - 2) This downward acceleration is <u>constant</u>
 - (a) Whether moving up, down, or not at all

- Up: v is (+); a is (-)
- Top: v = 0; a is (-)
- Down: : v is (-); a is (-)
- Moment of impact means the moment "just before"
- D) Notes on free-fall
 - 1) Acceleration *always* = $g(-9.81^{m}/_{s}^{2})$
 - 2) v_{top} = 0
 - 3) If the trip starts and ends at the same height $v_f = -v_i$ (for the trip)
 - (a) because:
 - $a_{up} = a_{down} (= g (-9.81^{m}/s^{2})) \dots and \dots$
 - $\Delta x_{up} = -\Delta x_{down} \dots so \dots$
 - (b) The way up
 - $v_f^2 = v_i^2 + 2a\Delta x$
 - v_f = 0 ...so...
 - $v_i = \pm \int (-2a\Delta x)$
 - (c) The way down
 - $v_f^2 = v_i^2 + 2a\Delta x$
 - v_i = 0 ...so...
 - $v_f = \pm \int (2a\Delta x) (= v_{i, \text{ the way up}})$
 - 4) Air resistance prevents "true" free-fall
 - (a) Air is composed of molecules bouncing off one another (kinetic molecular theory)
 - Moving means hitting molecules
 - This force opposes motion
 - Moving faster means hitting more molecules
 - Moving faster means more force opposing motion
 - When the force from the air is big enough acceleration stops (Terminal velocity)
 - (b) same effect up and down