\qquad
\qquad
\qquad

Circle the correct answers.
5. We see that tension in a rope is (dependent on) (independent of) the length of the rope. So the length of a vector representing rope tension is (dependent on) (independent of) the length of the rope.

Net Force

Fill in the magnitudes of net force for each case.

\qquad
\qquad Date \qquad

Vectors and Equilibrium

 tension \mathbf{T} of the string, and the downward pull of gravity \mathbf{W}. The forces are equal in magnitude and opposite in direction.

Net force on the rock is (zero) (greater than zero).

Here the rock is suspended by 2 strings. Tension in each string acts in a direction along the string. We'll show tension of the left string by vector \mathbf{A}, and tension of the right string by vector \mathbf{B}. The resultant of \mathbf{A} and \mathbf{B} is found by the parallelogram rule, and is shown by the dashed vector. Note it has the same magnitude as \mathbf{W}, so the net force on the rock is
(zero) (greater than zero).

Consider strings at unequal angles. The resultant $\mathbf{A}+\mathbf{B}$ is still equal and opposite to \mathbf{W}, and is shown by the dashed vector. Construct the appropriate parallelogram to produce this resultant. Show the relative magnitudes of \mathbf{A} and \mathbf{B}.

Tension in \mathbf{A} is (less than) (equal to) (greater than) tension in \mathbf{B}.

Repeat the procedure for the arrangement below.

Here tension is greater in \qquad

Construct vectors \mathbf{A} and \mathbf{B} for the cases below. First draw a vector \mathbf{W}, then the parallelogram that has equal and opposite vector $\mathbf{A}+\mathbf{B}$ as the diagonal. Then find approximate magnitudes of \mathbf{A} and \mathbf{B}.

CONCEPTUAL PHYSICS
\qquad
\qquad
\qquad

Concept-Development Practice Page

Inertia

Circle the correct answers.

1. An astronaut in outer space away from gravitational or frictional forces throws a rock. The rock will (gradually slow to a stop) (continue moving in a straight line at constant speed).

The rock's tendency to do this is called (inertia) (weight) (acceleration).

2.

The sketch shows a top view of a rock being whirled at the end of a string (clockwise). If the string breaks, the path of the rock is
(A)
(B)
(C)
(D).
3. Suppose you are standing in the aisle of a bus that travels along a straight road at $100 \mathrm{~km} / \mathrm{h}$, and you hold a pencil still above your head. Then relative to the bus, the velocity of the pencil is $0 \mathrm{~km} / \mathrm{h}$, and relative to the road, the pencil has a horizontal velocity of
(less than $100 \mathrm{~km} / \mathrm{h}$) ($100 \mathrm{~km} / \mathrm{h}$) (more than $100 \mathrm{~km} / \mathrm{h}$).
Suppose you release the pencil. While it is dropping, and relative to the road, the pencil still has a horizontal velocity of
(less than $100 \mathrm{~km} / \mathrm{h}$) ($100 \mathrm{~km} / \mathrm{h}$) (more than $100 \mathrm{~km} / \mathrm{h}$).

This means that the pencil will strike the floor at a place directly
(behind you) (at your feet below your hand) (in front of you).
Relative to you, the way the pencil drops
(is the same as if the bus were at rest)
(depends on the velocity of the bus).
How does this example illustrate the law of inertia?
\qquad
\qquad

CONCEPTUAL PHYSICS

