Section 1 Displacement and Velocity

< Back

Next >

Preview n

Main 🏚

Preview

- Objectives
- One Dimensional Motion
- Displacement
- Average Velocity
- Velocity and Speed
- Interpreting Velocity Graphically

Section 1 Displacement and Velocity

< Back

Next >

End Of Slid

Main n

Preview **n**

Objectives -

- Describe motion in terms of frame of reference, displacement, time, and velocity.
- Calculate the displacement of an object traveling at a known velocity for a specific time interval.
- Construct and interpret graphs of position versus time.

Section 1 Displacement and Velocity

< Back

Next >

Of

Main n

Preview n

One Dimensional Motion -

- To simplify the concept of motion, we will first consider motion that takes place in one direction.
- One example is the motion of a commuter train on a straight track.
- To measure motion, you must choose a frame of reference. A frame of reference is a system for specifying the precise location of objects in space and time.

Section 1 Displacement and Velocity

Frame of Reference

Click below to watch the Visual Concept.

Section 1 Displacement and Velocity

Displacement -

- Displacement is a change in position.
- Displacement is not always equal to the distance traveled.
- The SI unit of displacement is the meter, m. -

Section 1 Displacement and Velocity

< Back

Next >

Preview n

Main 🏚

Displacement

Click below to watch the Visual Concept.

Section 1 Displacement and Velocity

Positive and Negative Displacements

Section 1 Displacement and Velocity

Average Velocity -

 Average velocity is the total displacement divided by the time interval during which the displacement occurred.

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

average velocity =
$$\frac{\text{change in position}}{\text{change in time}} = \frac{\text{displacement}}{\text{time interval}}$$

 In SI, the unit of velocity is meters per second, abbreviated as m/s.

End Of

Slid

Main n

Preview **n**

Next >

< Back

Section 1 Displacement and Velocity

< Back

Next >

Preview n

Main 🏚

Average Velocity

Click below to watch the Visual Concept.

Section 1 Displacement and Velocity

Velocity and Speed -

- Velocity describes motion with both a direction and a numerical value (a magnitude).
- Speed has no direction, only magnitude.
- Average speed is equal to the total distance traveled divided by the time interval.

Section 1 Displacement and Velocity

< Back

Next >

Interpreting Velocity Graphically -

- For any position-time graph, we can determine the average velocity by drawing a straight line between any two points on the graph.
- If the velocity is constant, the graph of position versus time is a straight line. The slope indicates the velocity.
 - Object 1: positive slope = positive velocity
 - Object 2: zero slope= zero velocity
 - Object 3: negative slope = negative velocity

Preview n

End Of Slide

Main n

Section 1 Displacement and Velocity

Interpreting Velocity Graphically, continued -

The instantaneous velocity is the velocity of an object at some instant or at a specific point in the object's path.

The instantaneous velocity at a given time can be determined by measuring the slope of the line that is tangent to that point on the position-versus-time graph.

Section 1 Displacement and Velocity

Sign Conventions for Velocity

Click below to watch the Visual Concept.

Preview

- Objectives
- Changes in Velocity
- Motion with Constant Acceleration
- Sample Problem

Main 🏚

Preview n

Objectives -

- Describe motion in terms of changing velocity.
- Compare graphical representations of accelerated and nonaccelerated motions.
- Apply kinematic equations to calculate distance, time, or velocity under conditions of constant acceleration.

< Back

Next >

Of

Main n

Preview n

Changes in Velocity -

 Acceleration is the rate at which velocity changes over time.

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

change in velocity

average acceleration =

time required for change

Next >

< Back

End Of Slide

Main n

Preview n

- An object accelerates if its speed, direction, or both change.
- Acceleration has direction and magnitude. Thus, acceleration is a vector quantity.

Section 2 Acceleration

< Back

Next >

Preview n

Main 🏚

Acceleration

Click below to watch the Visual Concept.

< Back

Next >

Changes in Velocity, continued -

- Consider a train moving to the right, so that the displacement and the velocity are positive.
- The slope of the velocity-time graph is the average acceleration.
 - When the velocity in the positive direction is increasing, the acceleration is positive, as at A.
 - When the velocity is constant, there is no acceleration, as at B.
 - When the velocity in the positive direction is decreasing, the acceleration is negative, as at C.

Preview n

End Of

Slide

Main n

Section 2 Acceleration

Graphical Representations of Acceleration

Click below to watch the Visual Concept.

Velocity and Acceleration

+	+	speeding up
_	_	speeding up
+	_	slowing down
_	+	slowing down
– or +	0	constant velocity
0	– or +	speeding up from rest
0	0	remaining at rest

Motion with Constant Acceleration

- When velocity changes by the same amount during each time interval, acceleration is constant.
- The relationships between displacement, time, velocity, and constant acceleration are expressed by the equations shown on the next slide. These equations apply to any object moving with constant acceleration.

< Back

Next >

Of

Main n

Preview n

- These equations use the following symbols:
 - $\Delta x = displacement$
 - v_i = initial velocity
 - v_f = final velocity
 - Δt = time interval

Equations for Constantly Accelerated Straight-Line Motion

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x = \frac{1}{2}(\nu_i + \nu_f)\Delta t$	$\Delta x = \frac{1}{2} \nu_f \Delta t$
$\nu_f = \nu_i + a\Delta t$	$v_f = a\Delta t$
$\Delta x = \nu_i \Delta t + \frac{1}{2}a(\Delta t)^2$	$\Delta x = \frac{1}{2}a(\Delta t)^2$
$v_f^2 = v_i^2 + 2a\Delta x$	$v_f^2 = 2a\Delta x$

< Back

Next >

Preview n

Main n

Sample Problem -

Final Velocity After Any Displacement

A person pushing a stroller starts from rest, uniformly accelerating at a rate of 0.500 m/s². What is the velocity of the stroller after it has traveled 4.75 m?

< Back

Next >

Of

Main n

Preview n

< Back

Next >

Enc Of

Slide

Main n

Preview **n**

Sample Problem, *continued* -1. Define Given: $v_i = 0 \, \text{m/s}$ *a* = 0.500 m/s² -X+X $\Delta x = 4.75 \, \text{m}$ Unknown: $V_{f} = ?$ **Diagram:** Choose a coordinate system. The most convenient one has an origin at the initial location of the stroller, as shown above. The positive direction is to the right.

Sample Problem, continued

2. Plan

Choose an equation or situation: Because the initial velocity, acceleration, and displacement are known, the final velocity can be found using the following equation:

$$v_f^2 = v_i^2 + 2a\Delta x$$

Rearrange the equation to isolate the unknown: Take the square root of both sides to isolate v_f .

$$v_f = \pm \sqrt{v_i^2 + 2a\Delta x}$$

< Back

Next >

Of

Main n

Preview n

Tip: Think about the physical situation to determine whether to keep the positive or

negative answer from the square root. In this

speeding up and has a positive acceleration

Next >

Of

Slide

Main n

Preview n

case, the stroller starts from rest and ends with a speed of 2.18 m/s. An object that is

< Back

Sample Problem, continued

3. Calculate

Substitute the values into the equation and solve: -

 $v_f = \pm \sqrt{(0 \text{ m/s})^2 + 2(0.500 \text{ m/s}^2)(4.75 \text{ m})}$

 $v_f = +2.18 \text{ m/s}$

must have a positive velocity. So, the final 4. Evaluate velocity must be positive. The stroller's velocity after accelerating for 4.75 m is 2.18 m/s to the right.

Preview

- Objectives
- Free Fall
- Free-Fall Acceleration
- Sample Problem

Preview n

Main 🏚

Section 3 Falling Objects

Objectives -

- Relate the motion of a freely falling body to motion with constant acceleration.
- Calculate displacement, velocity, and time at various points in the motion of a freely falling object.
- **Compare** the motions of different objects in free fall.

< Back

Next >

Of

Main n

Preview n

Section 3 Falling Objects

< Back

Next >

Preview n

Main 🏚

Free Fall

Click below to watch the Visual Concept.

Section 3 Falling Objects

Free Fall

- Free fall is the motion of a body when only the force due to gravity is acting on the body.
- The acceleration on an object in free fall is called the acceleration due to gravity, or free-fall acceleration.
- Free-fall acceleration is denoted with the symbols ag (generally) or g (on Earth's surface).

< Back

Next >

Of

Main n

Preview n

Section 3 Falling Objects

Free-Fall Acceleration

Click below to watch the Visual Concept.

Free-Fall Acceleration -

- Free-fall acceleration is the same for all objects, regardless of mass.
- This book will use the value $g = 9.81 \text{ m/s}^2$.
- Free-fall acceleration on Earth's surface is –9.81 m/s² at all points in the object's motion.
- Consider a ball thrown up into the air.
 - Moving upward: velocity is decreasing, acceleration is 9.81 m/s² –
 - Top of path: velocity is zero, acceleration is -9.81 m/s^2 -
 - Moving downward: velocity is increasing, acceleration is 9.81 m/s²

< Back

Next >

Preview n

Main n

Section 3 Falling Objects

Velocity and Acceleration of an Object in Free Fall

Click below to watch the Visual Concept.

Section 3 Falling Objects

Sample Problem -

Falling Object

Jason hits a volleyball so that it moves with an initial velocity of 6.0 m/s straight upward. If the volleyball starts from 2.0 m above the floor, how long will it be in the air before it strikes the floor?

Back Next > Preview Main Main

Section 3 Falling Objects

Sample Problem, continued -

1. Define

Given: $v_i = +6.0 \text{ m/s}$ $a = -g = -9.81 \text{ m/s}^2$ $\Delta y = -2.0 \text{ m}$ Unknown: \downarrow $\Delta t = ?$

Diagram: Place the origin at the Starting point of the ball $(y_i = 0 \text{ at } t_i = 0).$

Sample Problem, continued -

2. Plan

Choose an equation or situation:

Both Δt and v_f are unknown. Therefore, first solve for v_f using the equation that does not require time. Then, the equation for v_f that does involve time can be used to solve for Δt .

$$v_f^2 = v_i^2 + 2a\Delta y$$
 $v_f = v_i + a\Delta t$

Rearrange the equation to isolate the unknown: Take the square root of the first equation to isolate v_{f} . The second equation must be rearranged to solve for Δt .

$$v_{f} = \pm \sqrt{v_{i}^{2} + 2a\Delta y} \qquad \Delta t = \frac{v_{f} - v_{i}}{a}$$

$$\leq \text{Back} \quad \text{Next} > \text{Preview} \quad \text{Main} \quad \text{Main}$$

Sample Problem, continued -

3. Calculate

Substitute the values into the equation and solve: First find the velocity of the ball at the moment that it hits the floor.

$$v_f = \pm \sqrt{v_i^2 + 2a\Delta y} = \pm \sqrt{(6.0 \text{ m/s})^2 + 2(-9.81 \text{ m/s}^2)(-2.0 \text{ m})}$$

$$v_f = \pm \sqrt{36 \text{ m}^2/\text{s}^2 + 39 \text{ m}^2/\text{s}^2} = \pm \sqrt{75 \text{ m}^2/\text{s}^2} = -8.7 \text{ m/s}$$

Tip: When you take the square root to find v_f , select the negative answer because the ball will be moving toward the floor, in the negative direction.

End Of

Main n

Preview **n**

Next >

< Back

Section 3 Falling Objects

Sample Problem, continued -

Next, use this value of v_f in the second equation to solve for Δt .

$$\Delta t = \frac{v_f - v_i}{a} = \frac{-8.7 \text{ m/s} - 6.0 \text{ m/s}}{-9.81 \text{ m/s}^2} = \frac{-14.7 \text{ m/s}}{-9.81 \text{ m/s}^2}$$

 $\Delta t = 1.50 \text{ s}$

4. Evaluate The solution, 1.50 s, is a reasonable amount of time for the ball to be in the air.

< Back

Next >

End Of Slide

Main n

Preview n