\qquad
\qquad
\qquad

Motion in One Dimension

Problem B

AVERACE ACCELEBATION

PROBLEM
In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of $1.80 \mathrm{~m} / \mathrm{s}^{2}$, it would go from rest to its top speed in 85.6 s . What was the speed of the vessel?

SOLUTION

Given: $\quad a_{\text {avg }}=1.80 \mathrm{~m} / \mathrm{s}^{2}$

$$
\Delta t=85.6 \mathrm{~s}
$$

$$
v_{i}=0 \mathrm{~m} / \mathrm{s}
$$

Unknown:

$$
v_{f}=?
$$

Use the definition of average acceleration to find v_{f}.

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}
$$

Rearrange the equation to calculate v_{f}.

$$
\begin{aligned}
v_{f} & =a_{\text {avg }} \Delta t+v_{i} \\
v_{f} & =\left(1.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(85.6 \mathrm{~s})+0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& =154 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& =\left(154 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{3.60 \times 10^{3} \mathrm{~s}}{1 \mathrm{~h}}\right)\left(\frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}\right) \\
& =554 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

ADDITIONAL PRAGTIGE

1. If the vessel in the sample problem accelerates for 1.00 min , what will its speed be after that minute? Calculate the answer in both meters per second and kilometers per hour.
2. In 1935, a French destroyer, La Terrible, attained one of the fastest speeds for any standard warship. Suppose it took 2.0 min at a constant acceleration of $0.19 \mathrm{~m} / \mathrm{s}^{2}$ for the ship to reach its top speed after starting from rest. Calculate the ship's final speed.
3. In 1934, the wind speed on Mt. Washington in New Hampshire reached a record high. Suppose a very sturdy glider is launched in this wind, so that in 45.0 s the glider reaches the speed of the wind. If the
\qquad
\qquad
glider undergoes a constant acceleration of $2.29 \mathrm{~m} / \mathrm{s}^{2}$, what is the wind's speed? Assume that the glider is initially at rest.
4. In 1992, Maurizio Damilano, of Italy, walked 29752 m in 2.00 h .
a. Calculate Damilano's average speed in m / s.
b. Suppose Damilano slows down to $3.00 \mathrm{~m} / \mathrm{s}$ at the midpoint in his journey, but then picks up the pace and accelerates to the speed calculated in (a). It takes Damilano 30.0 s to accelerate. Find the magnitude of the average acceleration during this time interval.
5. South African frogs are capable of jumping as far as 10.0 m in one hop. Suppose one of these frogs makes exactly 15 of these jumps in a time interval of 60.0 s .
a. What is the frog's average velocity?
b. If the frog lands with a velocity equal to its average velocity and comes to a full stop 0.25 s later, what is the frog's average acceleration?
6. In 1991 at Smith College, in Massachusetts, Ferdie Adoboe ran $1.00 \times 10^{2} \mathrm{~m}$ backward in 13.6 s . Suppose it takes Adoboe 2.00 s to achieve a velocity equal to her average velocity during the run. Find her average acceleration during the first 2.00 s .
7. In the 1992 Summer Olympics, the German four-man kayak team covered 1 km in just under 3 minutes. Suppose that between the starting point and the 150 m mark the kayak steadily increases its speed from $0.0 \mathrm{~m} / \mathrm{s}$ to $6.0 \mathrm{~m} / \mathrm{s}$, so that its average speed is $3.0 \mathrm{~m} / \mathrm{s}$.
a. How long does it take to cover the 150 m ?
b. What is the magnitude of the average acceleration during that part of the course?
8. The highest speed ever achieved on a bicycle was reached by John Howard of the United States. The bicycle, which was accelerated by being towed by a vehicle, reached a velocity of $+245 \mathrm{~km} / \mathrm{h}$. Suppose Howard wants to slow down, and applies the brakes on his now freely moving bicycle. If the average acceleration of the bicycle during braking is $-3.0 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the bicycle's velocity to decrease by 20.0 percent?
9. In 1993, bicyclist Rebecca Twigg of the United States traveled 3.00 km in 217.347 s . Suppose Twigg travels the entire distance at her average speed and that she then accelerates at $-1.72 \mathrm{~m} / \mathrm{s}^{2}$ to come to a complete stop after crossing the finish line. How long does it take Twigg to come to a stop?
10. During the Winter Olympic games at Lillehammer, Norway, in 1994, Dan Jansen of the United States skated $5.00 \times 10^{2} \mathrm{~m}$ in 35.76 s . Suppose it takes Jansen 4.00 s to increase his velocity from zero to his maximum velocity, which is 10.0 percent greater than his average velocity during the whole run. Calculate Jansen's average acceleration during the first 4.00 s .

Additional Practice B

Givens

1. $v_{i}=0 \mathrm{~km} / \mathrm{h}=0 \mathrm{~m} / \mathrm{s}$
$a_{a v g}=1.8 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta t=1.00 \mathrm{~min}$

Solutions

$v_{f}=a_{\text {avg }} \Delta t+v_{i}=\left(1.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)+0 \mathrm{~m} / \mathrm{s}=108 \mathrm{~m} / \mathrm{s}$
$v_{f}=108 \mathrm{~m} / \mathrm{s}=(108 \mathrm{~m} / \mathrm{s})\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right)\left(\frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}\right)=389 \mathrm{~km} / \mathrm{h}$
2. $\Delta t=2.0 \mathrm{~min}$
$a_{\text {avg }}=0.19 \mathrm{~m} / \mathrm{s}^{2}$
$\nu_{i}=0 \mathrm{~m} / \mathrm{s}$
$v_{f}=a_{\text {avg }} \Delta t+v_{i}=\left(0.19 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)+0 \mathrm{~m} / \mathrm{s}=23 \mathrm{~m} / \mathrm{s}$
3. $\Delta t=45.0 \mathrm{~s}$
$a_{a v g}=2.29 \mathrm{~m} / \mathrm{s}^{2}$
$\nu_{i}=0 \mathrm{~m} / \mathrm{s}$
4. $\Delta x=29752 \mathrm{~m}$
$\Delta t=2.00 \mathrm{~h}$
a. $v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{29752 \mathrm{~m}}{(2.00 \mathrm{~h})\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right)}=4.13 \mathrm{~m} / \mathrm{s}$
$v_{i}=3.00 \mathrm{~m} / \mathrm{s}$
b. $a_{\text {avg }}=\frac{\Delta v}{\Delta t}=\frac{4.13 \mathrm{~m} / \mathrm{s}-3.00 \mathrm{~m} / \mathrm{s}}{30.0 \mathrm{~s}}=\frac{1.13 \mathrm{~m} / \mathrm{s}}{30.0 \mathrm{~s}}=3.77 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
$\nu_{f}=4.13 \mathrm{~m} / \mathrm{s}$
$\Delta t=30.0 \mathrm{~s}$
$v_{f}=a_{\text {avg }} \Delta t+v_{i}=\left(2.29 \mathrm{~m} / \mathrm{s}^{2}\right)(45.0 \mathrm{~s})+0 \mathrm{~m} / \mathrm{s}=103 \mathrm{~m} / \mathrm{s}$
5. $\Delta x=(15$ hops $)\left(\frac{10.0 \mathrm{~m}}{1 \text { hop }}\right)$
a. $v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{1.50 \times 10^{2} \mathrm{~m}}{60.0 \mathrm{~s}}=+2.50 \mathrm{~m} / \mathrm{s}$ $=1.50 \times 10^{2} \mathrm{~m}$
$\Delta t=60.0 \mathrm{~s}$
b. $a_{\text {avg }}=\frac{v_{f}-v_{i}}{\Delta t_{\text {stop }}}=\frac{0 \mathrm{~m} / \mathrm{s}-2.50 \mathrm{~m} / \mathrm{s}}{0.25 \mathrm{~s}}=\frac{-2.50 \mathrm{~m} / \mathrm{s}}{0.25 \mathrm{~m} / \mathrm{s}}=-1.0 \times 10^{1} \mathrm{~m} / \mathrm{s}^{2}$
$\Delta t_{\text {stop }}=0.25 \mathrm{~s}$
$v_{f}=0 \mathrm{~m} / \mathrm{s}$
$v_{i}=v_{\text {avg }}=+2.50 \mathrm{~m} / \mathrm{s}$
6. $\Delta x=1.00 \times 10^{2} \mathrm{~m}$, backward $=-1.00 \times 10^{2} \mathrm{~m}$
$v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{-1.00 \times 10^{2} \mathrm{~m}}{13.6 \mathrm{~s}}=-7.35 \mathrm{~m} / \mathrm{s}$
$\Delta t=13.6 \mathrm{~s}$
$\Delta t^{\prime}=2.00 \mathrm{~s}$
$a_{\text {avg }}=\frac{v_{f}-v_{i}}{\Delta t^{\prime}}=\frac{-7.35 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{2.00 \mathrm{~s}}=3.68 \mathrm{~m} / \mathrm{s}^{2}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$v_{f}=v_{\text {avg }}$
7. $\Delta x=150 \mathrm{~m}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
a. $\Delta t=\frac{\Delta x}{v_{\text {avg }}}=\frac{150 \mathrm{~m}}{3.0 \mathrm{~m} / \mathrm{s}}=5.0 \times 10^{1} \mathrm{~s}$
$v_{f}=6.0 \mathrm{~m} / \mathrm{s}$
$v_{\text {avg }}=3.0 \mathrm{~m} / \mathrm{s}$
b. $a_{\text {avg }}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{6.0 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{5.0 \times 10^{1}}=0.12 \mathrm{~m} / \mathrm{s}^{2}$

Givens

8. $v_{i}=+245 \mathrm{~km} / \mathrm{h}$
$a_{\text {avg }}=-3.0 \mathrm{~m} / \mathrm{s}^{2}$
$v_{f}=v_{i}-(0.200) v_{i}$
$v_{f}=(1.000-0.200) v_{i}=(0.800)(68.1 \mathrm{~m} / \mathrm{s})=+54.5 \mathrm{~m} / \mathrm{s}$
$\Delta t=\frac{v_{f}-v_{i}}{a_{\text {avg }}}=\frac{54.5 \mathrm{~m} / \mathrm{s}-68.1 \mathrm{~m} / \mathrm{s}}{-3.0 \mathrm{~m} / \mathrm{s}^{2}}=\frac{-13.6 \mathrm{~m} / \mathrm{s}}{-3.0 \mathrm{~m} / \mathrm{s}^{2}}=4.5 \mathrm{~s}$

Solutions

$v_{i}=\left(245 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)=+68.1 \mathrm{~m} / \mathrm{s}$
9. $\Delta x=3.00 \mathrm{~km}$
$\Delta t=217.347 \mathrm{~s}$
$v_{i}=v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{3.00 \times 10^{3} \mathrm{~m}}{217.347 \mathrm{~s}}=13.8 \mathrm{~m} / \mathrm{s}$
$a_{a v g}=-1.72 \mathrm{~m} / \mathrm{s}^{2}$
$v_{f}=0 \mathrm{~m} / \mathrm{s}$
$t_{\text {top }}=\frac{v_{f}-v_{i}}{a_{\text {avg }}}=\frac{0 \mathrm{~m} / \mathrm{s}-13.8 \mathrm{~m} / \mathrm{s}}{-1.72 \mathrm{~m} / \mathrm{s}^{2}}=\frac{-13.8 \mathrm{~m} / \mathrm{s}}{-1.72 \mathrm{~m} / \mathrm{s}^{2}}=8.02 \mathrm{~s}$
10. $\Delta x=+5.00 \times 10^{2} \mathrm{~m}$
$\Delta t=35.76 \mathrm{~s}$
$v_{f}=v_{\max }=(1.100) v_{\text {avg }}=(1.100)\left(\frac{\Delta x}{\Delta t}\right)=(1.100)\left(\frac{5.00 \times 10^{2} \mathrm{~m}}{35.76 \mathrm{~s}}\right)=+15.4 \mathrm{~m} / \mathrm{s}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$\Delta t^{\prime}=4.00 \mathrm{~s}$
$a_{\text {avg }}=\frac{\Delta v}{\Delta t^{\prime}}=\frac{v_{f}-v_{i}}{\Delta t^{\prime}}=\frac{15.4 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{4.00 \mathrm{~s}}=+3.85 \mathrm{~m} / \mathrm{s}^{2}$
$v_{\text {max }}=v_{\text {avg }}+(0.100) v_{\text {avg }}$

Additional Practice C

1. $\Delta x=115 \mathrm{~m}$
$v_{i}=4.20 \mathrm{~m} / \mathrm{s}$
$\Delta t=\frac{2 \Delta x}{v_{i}+v_{f}}=\frac{(2)(115 \mathrm{~m})}{4.20 \mathrm{~m} / \mathrm{s}+5.00 \mathrm{~m} / \mathrm{s}}=\frac{(2)(115 \mathrm{~m})}{9.20 \mathrm{~m} / \mathrm{s}}=25.0 \mathrm{~s}$
$v_{f}=5.00 \mathrm{~m} / \mathrm{s}$
2. $\Delta x=180.0 \mathrm{~km}$
$v_{i}=3.00 \mathrm{~km} / \mathrm{s}$
$\Delta t=\frac{2 \Delta x}{v_{i}+v_{f}}=\frac{(2)(180.0 \mathrm{~km})}{3.00 \mathrm{~km} / \mathrm{s}+0 \mathrm{~km} / \mathrm{s}}=\frac{360.0 \mathrm{~km}}{3.00 \mathrm{~km} / \mathrm{s}}=1.2 \times 10^{2} \mathrm{~s}$
$v_{f}=0 \mathrm{~km} / \mathrm{s}$
3. $v_{i}=0 \mathrm{~km} / \mathrm{h}$
$v_{f}=1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}$
$\Delta x=20.0 \mathrm{~km}$
a. $\Delta t=\frac{2 \Delta x}{v_{i}+v_{f}}=$
$\frac{(2)\left(20.0 \times 10^{3} \mathrm{~m}\right)}{\left(1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}+0 \mathrm{~km} / \mathrm{h}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)}$

$$
\Delta t=\frac{40.0 \times 10^{3} \mathrm{~m}}{\left(1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)}=132 \mathrm{~s}
$$

$\Delta x=5.00 \mathrm{~km}$
$v_{i}=1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}$
$v_{f}=0 \mathrm{~km} / \mathrm{h}$

$$
\text { b. } \Delta t=\frac{2 \Delta x}{v_{i}+v_{f}}=\frac{(2)\left(5.00 \times 10^{3} \mathrm{~m}\right)}{\left(1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}+0 \mathrm{~km} / \mathrm{h}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)}
$$

$$
\Delta t=\frac{10.0 \times 10^{3} \mathrm{~m}}{\left(1.09 \times 10^{3} \mathrm{~km} / \mathrm{h}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)}=33.0 \mathrm{~s}
$$

