\qquad
\qquad
\qquad

Motion in One Dimension

VELOCITY AND DISPLAGEMENT WHTH GONSTANT AGCELERATION

PROBLEM
A barge moving with a speed of $1.00 \mathrm{~m} / \mathrm{s}$ increases speed uniformly, so that in 30.0 s it has traveled $\mathbf{6 0 . 2} \mathbf{~ m}$. What is the magnitude of the barge's acceleration?

SOLUTION

Given:

$$
\begin{aligned}
& v_{i}=1.00 \mathrm{~m} / \mathrm{s} \\
& \Delta t=30.0 \mathrm{~s} \\
& \Delta x=60.2 \mathrm{~m}
\end{aligned}
$$

Unknown: $\quad a=$?
Use the equation for displaement with constant uniform acceleration.

$$
\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}
$$

Rearrange the equation to solve for a.

$$
\begin{aligned}
& \frac{1}{2} a \Delta t^{2}=\Delta x-v_{i} \Delta t \\
& a=\frac{2\left(\Delta x-v_{i} \Delta t\right)}{\Delta t^{2}} \\
& a=\frac{(2)[60.2 \mathrm{~m}-(1.00 \mathrm{~m} / \mathrm{s})(30.0 \mathrm{~s})]}{(30.0 \mathrm{~s})^{2}} \\
& a=\frac{(2)(60.2 \mathrm{~m}-30.0 \mathrm{~m})}{9.00 \times 10^{2} \mathrm{~s}^{2}} \\
& a=\frac{(2)(30.2 \mathrm{~m})}{9.00 \times 10^{2} \mathrm{~s}^{2}} \\
& a=6.71 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

ADDITIONAL PRAGTGE

1. The flight speed of a small bottle rocket can vary greatly, depending on how well its powder burns. Suppose a rocket is launched from rest so that it travels 12.4 m upward in 2.0 s . What is the rocket's net acceleration?
2. The shark can accelerate to a speed of $32.0 \mathrm{~km} / \mathrm{h}$ in a few seconds. Assume that it takes a shark 1.5 s to accelerate uniformly from $2.8 \mathrm{~km} / \mathrm{h}$ to $32.0 \mathrm{~km} / \mathrm{h}$. What is the magnitude of the shark's acceleration?
3. In order for the Wright brothers' 1903 flyer to reach launch speed, it had to be accelerated uniformly along a track that was 18.3 m long. A system of pulleys and falling weights provided the acceleration. If the flyer was initially at rest and it took 2.74 s for the flyer to travel the length of the track, what was the magnitude of its acceleration?
\qquad DATE \qquad CLASS \qquad
4. A certain roller coaster increases the speed of its cars as it raises them to the top of the incline. Suppose the cars move at $2.3 \mathrm{~m} / \mathrm{s}$ at the base of the incline and are moving at $46.7 \mathrm{~m} / \mathrm{s}$ at the top of the incline. What is the magnitude of the net acceleration if it is uniform acceleration and takes place in 7.0 s ?
5. A ship with an initial speed of $6.23 \mathrm{~m} / \mathrm{s}$ approaches a dock that is 255 m away. If the ship accelerates uniformly and comes to rest in 82 s , what is its acceleration?
6. Although tigers are not the fastest of predators, they can still reach and briefly maintain a speed of $55 \mathrm{~km} / \mathrm{h}$. Assume that a tiger takes 4.1 s to reach this speed from an initial speed of $11 \mathrm{~km} / \mathrm{h}$. What is the magnitude of the tiger's acceleration, assuming it accelerates uniformly?
7. Assume that a catcher in a professional baseball game catches a ball that has been pitched with an initial velocity of $42.0 \mathrm{~m} / \mathrm{s}$ to the southeast. If the catcher uniformly brings the ball to rest in 0.0090 s through a distance of 0.020 m to the southeast, what is the ball's acceleration?
8. A crate is carried by a conveyor belt to a loading dock. The belt speed uniformly increases slightly, so that for 28.0 s the crate accelerates by $0.035 \mathrm{~m} / \mathrm{s}^{2}$. If the crate's initial speed is $0.76 \mathrm{~m} / \mathrm{s}$, what is its final speed?
9. A plane starting at rest at the south end of a runway undergoes a uniform acceleration of $1.60 \mathrm{~m} / \mathrm{s}^{2}$ to the north. At takeoff, the plane's velocity is $72.0 \mathrm{~m} / \mathrm{s}$ to the north.
a. What is the time required for takeoff?
b. How far does the plane travel along the runway?
10. A cross-country skier with an initial forward velocity of $+4.42 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at $-0.75 \mathrm{~m} / \mathrm{s}^{2}$.
a. How long does it take the skier to come to a stop?
b. What is the skier's displacement in this time interval?

Additional Practice D

Givens

1. $\Delta x=12.4 \mathrm{~m}$ upward
$\Delta t=2.0 \mathrm{~s}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$

Solutions

$$
\text { Because } v_{i}=0 \mathrm{~m} / \mathrm{s}, a=\frac{2 \Delta x}{\Delta t^{2}}=\frac{(2)(12.4 \mathrm{~m})}{(2.0 \mathrm{~s})^{2}}=6.2 \mathrm{~m} / \mathrm{s}^{2} \text { upward }
$$

2. $\Delta t=1.5 \mathrm{~s}$
$v_{i}=2.8 \mathrm{~km} / \mathrm{h}$
$v_{f}=32.0 \mathrm{~km} / \mathrm{h}$

$$
a=\frac{v_{f}-v_{i}}{\Delta t}=\frac{(32.0 \mathrm{~km} / \mathrm{h}-2.8 \mathrm{~km} / \mathrm{h})\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{\mathrm{~km}}\right)}{1.5 \mathrm{~s}}
$$

$a=\frac{(29.2 \mathrm{~km} / \mathrm{h})\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)}{1.5 \mathrm{~s}}=5.4 \mathrm{~m} / \mathrm{s}^{2}$
3. $\Delta x=18.3 \mathrm{~m}$
$\Delta t=2.74 \mathrm{~s}$
Because $\nu_{i}=0 \mathrm{~m} / \mathrm{s}, a=\frac{2 \Delta x}{\Delta t^{2}}=\frac{(2)(18.3 \mathrm{~m})}{(2.74 \mathrm{~s})^{2}}=4.88 \mathrm{~m} / \mathrm{s}^{2}$
$\nu_{i}=0 \mathrm{~m} / \mathrm{s}$
4. $v_{i}=2.3 \mathrm{~m} / \mathrm{s}$
$v_{f}=46.7 \mathrm{~m} / \mathrm{s}$

$$
a=\frac{v_{f}-v_{i}}{\Delta t}=\frac{46.7 \mathrm{~m} / \mathrm{s}-2.3 \mathrm{~m} / \mathrm{s}}{7.0 \mathrm{~s}}=\frac{44.4 \mathrm{~m} / \mathrm{s}}{7.0 \mathrm{~s}}=6.3 \mathrm{~m} / \mathrm{s}^{2}
$$

$\Delta t=7.0 \mathrm{~s}$
5. $v_{i}=6.23 \mathrm{~m} / \mathrm{s}$
$\Delta x=255 \mathrm{~m}$
$\Delta t=82 \mathrm{~s}$

$$
\begin{aligned}
& a=\frac{2\left(\Delta x-v_{i} \Delta t\right)}{\Delta t^{2}}=\frac{(2)[255 \mathrm{~m}-(6.23 \mathrm{~m} / \mathrm{s})(82 \mathrm{~s})]}{(82 \mathrm{~s})^{2}} \\
& a=\frac{(2)(255 \mathrm{~m}-510 \mathrm{~m})}{6.7 \times 10^{3} \mathrm{~s}^{2}}=\frac{(2)(-255 \mathrm{~m})}{6.7 \times 10^{3} \mathrm{~s}^{2}}=-7.6 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

6. $v_{i}=11 \mathrm{~km} / \mathrm{h}$
$v_{f}=55 \mathrm{~km} / \mathrm{h}$
$\Delta=4.1 \mathrm{~s}$

$$
a=\frac{v_{f}-v_{i}}{\Delta t}=\frac{(55 \mathrm{~km} / \mathrm{h}-11 \mathrm{~km} / \mathrm{h})\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)}{4.1 \mathrm{~s}}
$$

$$
a=\frac{(44 \mathrm{~km} / \mathrm{h})\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)}{4.1 \mathrm{~s}}=3.0 \mathrm{~m} / \mathrm{s}^{2}
$$

7. $v_{i}=42.0 \mathrm{~m} / \mathrm{s}$ southeast
$\Delta t=0.0090 \mathrm{~s}$
$\Delta x=0.020 \mathrm{~m} / \mathrm{s}$ southeast

$$
\begin{aligned}
& a=\frac{2\left(\Delta x-v_{i} \Delta t\right)}{\Delta t^{2}}=\frac{(2)[0.020 \mathrm{~m}-(42.0 \mathrm{~m} / \mathrm{s})(0.0090 \mathrm{~s})]}{(0.0090 \mathrm{~s})^{2}} \\
& a=\frac{(2)(0.020 \mathrm{~m} / \mathrm{s}-0.38 \mathrm{~m})}{8.1 \times 10^{-5} \mathrm{~s}^{2}}=\frac{(2)(-0.36 \mathrm{~m})}{8.1 \times 10^{-5} \mathrm{~s}^{2}} \\
& a=-8.9 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}, \text { or } 8.9 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2} \text { northwest }
\end{aligned}
$$

8. $\Delta t=28 \mathrm{~s}$
$a=0.035 \mathrm{~m} / \mathrm{s}^{2}$
$\nu_{i}=0.76 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=a \Delta t+v_{i}=\left(0.035 \mathrm{~m} / \mathrm{s}^{2}\right)(28.0 \mathrm{~s})+0.76 \mathrm{~m} / \mathrm{s}=0.98 \mathrm{~m} / \mathrm{s}+0.76 \mathrm{~m} / \mathrm{s}=1.74 \mathrm{~m} / \mathrm{s}
$$

Givens
9. $v_{i}=0 \mathrm{~m} / \mathrm{s}$
$v_{f}=72.0 \mathrm{~m} / \mathrm{s}$ north
$a=1.60 \mathrm{~m} / \mathrm{s}^{2}$ north
$\Delta t=45.0 \mathrm{~s}$
10. $v_{i}=+4.42 \mathrm{~m} / \mathrm{s}$
$v_{f}=0 \mathrm{~m} / \mathrm{s}$
$a=-0.75 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta t=5.9 \mathrm{~s}$

Solutions
a. $\Delta t=\frac{v_{f}-v_{i}}{a}=\frac{72.0 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{1.60 \mathrm{~m} / \mathrm{s}^{2}}=45.0 \mathrm{~s}$
b. $\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}=(0 \mathrm{~m} / \mathrm{s})(45.0 \mathrm{~s})+\frac{1}{2}\left(1.60 \mathrm{~m} / \mathrm{s}^{2}\right)(45.0 \mathrm{~s})^{2}=0 \mathrm{~m}+1620 \mathrm{~m}$

$$
\Delta x=1.62 \mathrm{~km}
$$

a. $\Delta t=\frac{v_{f}-v_{i}}{a}=\frac{0 \mathrm{~m} / \mathrm{s}-4.42 \mathrm{~m} / \mathrm{s}}{-0.75 \mathrm{~m} / \mathrm{s}^{2}}=\frac{-4.42 \mathrm{~m} / \mathrm{s}}{-0.75 \mathrm{~m} / \mathrm{s}^{2}}=5.9 \mathrm{~s}$
b. $\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}=(4.42 \mathrm{~m} / \mathrm{s})(5.9 \mathrm{~s})+\frac{1}{2}\left(-0.75 \mathrm{~m} / \mathrm{s}^{2}\right)(5.9 \mathrm{~s})^{2}$

$$
\Delta x=26 \mathrm{~m}-13 \mathrm{~m}=13 \mathrm{~m}
$$

Additional Practice E

1. $v_{i}=1.8 \mathrm{~km} / \mathrm{h}$
$v_{f}=24.0 \mathrm{~km} / \mathrm{h}$
$\Delta x=4.0 \times 10^{2} \mathrm{~m}$

$$
\begin{aligned}
& a=\frac{v_{f}^{2}-v_{i}^{2}}{2 \Delta x}=\frac{\left[(24.0 \mathrm{~km} / \mathrm{h})^{2}-(1.8 \mathrm{~km} / \mathrm{h})^{2}\right]\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{(2)\left(4.0 \times 10^{2} \mathrm{~m}\right)} \\
& a=\frac{\left(576 \mathrm{~km}^{2} / \mathrm{h}^{2}-3.2 \mathrm{~km}^{2} / \mathrm{h}^{2}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{8.0 \times 10^{2} \mathrm{~m}} \\
& a=\frac{\left(573 \mathrm{~km}^{2} / \mathrm{h}^{2}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{8.0 \times 10^{2} \mathrm{~m}}=5.5 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2. $v_{f}=0 \mathrm{~m} / \mathrm{s}$
$v_{f}=8.57 \mathrm{~m} / \mathrm{s}$

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 \Delta x}=\frac{(8.57 \mathrm{~m} / \mathrm{s})^{2}-(0 \mathrm{~m} / \mathrm{s})^{2}}{(2)(19.53 \mathrm{~m})}=\frac{73.4 \mathrm{~m}^{2} / \mathrm{s}^{2}}{39.06 \mathrm{~m}}=1.88 \mathrm{~m} / \mathrm{s}^{2}
$$

$\Delta x=19.53 \mathrm{~m}$
3. $v_{i}=7.0 \mathrm{~km} / \mathrm{h}$
$v_{f}=34.5 \mathrm{~km} / \mathrm{h}$
$\Delta x=95 \mathrm{~m}$

$$
\begin{aligned}
& a=\frac{v_{f}^{2}-v_{i}^{2}}{2 \Delta x}=\frac{\left[(34.5 \mathrm{~km} / \mathrm{h})^{2}-(7.0 \mathrm{~km} / \mathrm{h})^{2}\right]\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{(2)(95 \mathrm{~m})} \\
& a=\frac{\left(1190 \mathrm{~km}^{2} / \mathrm{h}^{2}-49 \mathrm{~km}^{2} / \mathrm{h}^{2}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{190 \mathrm{~m}} \\
& a=\frac{\left(1140 \mathrm{~km}^{2} / \mathrm{h}^{2}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}}{190 \mathrm{~m}}=0.46 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

4. $\Delta x=2.00 \times 10^{2} \mathrm{~m}$

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 \Delta x}=\frac{(10.22 \mathrm{~m} / \mathrm{s})^{2}-(9.78 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(2.00 \times 10^{2} \mathrm{~m}\right)}=\frac{104.4 \mathrm{~m}^{2} / \mathrm{s}^{2}-95.6 \mathrm{~m}^{2} / \mathrm{s}^{2}}{4.00 \times 10^{2} \mathrm{~m}}
$$

$v_{i}=9.78 \mathrm{~m} / \mathrm{s}$
$v_{f}=10.22 \mathrm{~m} / \mathrm{s}$

$$
a=\frac{8.8 \mathrm{~m}^{2} / \mathrm{s}^{2}}{4.00 \times 10^{2} \mathrm{~m}}=2.2 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
$$

