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Motion in One Dimension

Problem D
VELOCITY AND DISPLACEMENT WITH CONSTANT ACCELERATION

P R O B L E M
Some cockroaches can run as fast as 1.5 m/s. Suppose that two cock-
roaches are separated by a distance of 60.0 cm and that they begin to run
toward each other at the same moment. Both insects have constant accel-
eration until they meet. The first cockroach has an acceleration of
0.20 m/s2 in one direction, and the second one has an acceleration of
0.12 m/s2 in the opposite direction. How much time passes before the 
two insects bump into each other?

S O L U T I O N
Given: a1 = 0.20 m/s2 (first cockroach’s acceleration)

vi,1 = 0 m/s (first cockroach’s initial speed)

a2 = 0.12 m/s2 (second cockroach’s acceleration)

vi,2 = 0 m/s (second cockroach’s initial speed)

d = 60.0 cm = 0.60 m (initial distance between the insects)

Unknown: ∆x1 = ? ∆x2 = ? ∆t = ?

Choose an equation(s) or situation: Use the equation for displacement with

constant acceleration for each cockroach.

∆x1 = vi,1∆t + 1
2

a1∆t2

∆x2 = vi,2∆t + 1
2

a2∆t2

The distance the second cockroach travels can be expressed as the difference be-

tween the total distance that initially separates the two insects and the distance

that the first insect travels.

∆x2 = d – ∆x1

Rearrange the equation(s) to isolate the unknown(s): Substitute the expression

for the first cockroach’s displacement into the equation for the second cockroach’s

displacement using the equation relating the two displacements to the initial dis-

tance between the insects.

∆x2 = d – ∆x1 = d – �vi,1∆t + 1
2

a1∆t2�
= vi,2∆t + 1

2
a2∆t2

The equation can be rewritten to express ∆t in terms of the known quantities. To

simplify the calculation, the terms involving the initial speeds, which are both

zero, can be removed from the equations.

d – 1
2

a1∆t2 = 1
2

a2∆t2

∆t = �
a1
�2

+
d� a�2
�

1. DEFINE
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Substitute the values into the equation(s) and solve:

∆t = �� = �� =

The final speeds for the first and second cockroaches are 0.38 m/s and 0.23 m/s,

respectively. Both of these values are well below the maximum speed for cock-

roaches in general.

1.9 s
1.2 m

0.32 m/s2

(2)(0.60 m)

0.20 

m

s2 + 0.12 
m

s2
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ADDITIONAL PRACTICE

1. In 1986, the first flight around the globe without a single refueling was

completed. The aircraft’s average speed was 186 km/h. If the airplane

landed at this speed and accelerated at −1.5 m/s2, how long did it take

for the airplane to stop?

2. In 1976, Gerald Hoagland drove a car over 8.0 × 102 km in reverse. For-

tunately for Hoagland and motorists in general, the event took place on

a special track. During this drive, Hoagland’s average velocity was

about –15.0 m/s. Suppose Hoagland decides during his drive to go for-

ward. He applies the brakes, stops, and then accelerates until he moves

forward at same speed he had when he was moving backward. How

long would the entire reversal process take if the average acceleration

during this process is +2.5 m/s2?

3. The first permanent public railway was built by George Stephenson

and opened in Cleveland, Ohio, in 1825. The average speed of the

trains was 24.0 km/h. Suppose a train moving at this speed accelerates

–0.20 m/s2 until it reaches a speed of 8.0 km/h. How long does it take

the train to undergo this change in speed?

4. The winding cages in mine shafts are used to move workers in and out

of the mines. These cages move much faster than any commercial ele-

vators. In one South African mine, speeds of up to 65.0 km/h are at-

tained. The mine has a depth of 2072 m. Suppose two cages start their

downward journey at the same moment. The first cage quickly attains

the maximum speed (an unrealistic situation), then proceeds to de-

scend uniformly at that speed all the way to the bottom. The second

cage starts at rest and then increases its speed with a constant accelera-

tion of magnitude 4.00 × 10–2 m/s2. How long will the trip take for

each cage? Which cage will reach the bottom of the mine shaft first?

5. In a 1986 bicycle race, Fred Markham rode his bicycle a distance of

2.00 × 102 m with an average speed of 105.4 km/h. Markham and the

bicycle started the race with a certain initial speed.

a. Find the time it took Markham to cover 2.00 × 102 m.

b. Suppose a car moves from rest under constant acceleration. What

is the magnitude of the car’s acceleration if the car is to finish the

race at exactly the same time Markham finishes the race?

3. CALCULATE

4. EVALUATE
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6. Some tropical butterflies can reach speeds of up to 11 m/s. Suppose a

butterfly flies at a speed of 6.0 m/s while another flying insect some dis-

tance ahead flies in the same direction with a constant speed. The but-

terfly then increases its speed at a constant rate of 1.4 m/s2 and catches

up to the other insect 3.0 s later. How far does the butterfly travel dur-

ing the race?

7. Mary Rife, of Texas, set a women’s world speed record for sailing. In

1977, her vessel, Proud Mary, reached a speed of 3.17 × 102 km/h. Sup-

pose it takes 8.0 s for the boat to decelerate from 3.17 × 102 km/h to

2.00 × 102 km/h. What is the boat’s acceleration? What is the displace-

ment of the Proud Mary as it slows down?

8. In 1994, a human-powered submarine was designed in Boca Raton,

Florida. It achieved a maximum speed of 3.06 m/s. Suppose this sub-

marine starts from rest and accelerates at 0.800 m/s2 until it reaches

maximum speed. The submarine then travels at constant speed for an-

other 5.00 s. Calculate the total distance traveled by the submarine.

9. The highest speed achieved by a standard nonracing sports car is 

3.50 × 102 km/h. Assuming that the car accelerates at 4.00 m/s2, how

long would this car take to reach its maximum speed if it is initially at

rest? What distance would the car travel during this time?

10. Stretching 9345 km from Moscow to Vladivostok, the Trans-Siberian

railway is the longest single railroad in the world. Suppose the train is ap-

proaching the Moscow station at a velocity of +24.7 m/s when it begins a

constant acceleration of –0.850 m/s2. This acceleration continues for 28

s. What will be the train’s final velocity when it reaches the station?

11. The world’s fastest warship belongs to the United States Navy. This ves-

sel, which floats on a cushion of air, can move as fast as 1.7 × 102 km/h.

Suppose that during a training exercise the ship accelerates +2.67 m/s2,

so that after 15.0 s its displacement is +6.00 × 102 m. Calculate the

ship’s initial velocity just before the acceleration. Assume that the ship

moves in a straight line.

12. The first supersonic flight was performed by then Capt. Charles 

Yeager in 1947. He flew at a speed of 3.00 × 102 m/s at an altitude of

more than 12 km, where the speed of sound in air is slightly less than

3.00 × 102 m/s. Suppose Capt. Yeager accelerated 7.20 m/s2 in 25.0 s to

reach a final speed of 3.00 × 102 m/s. What was his initial speed?

13. Peter Rosendahl rode his unicycle a distance of 1.00 × 102 m in 12.11 s.

If Rosendahl started at rest, what was the magnitude of his acceleration?

14. Suppose that Peter Rosendahl began riding the unicycle with a speed of

3.00 m/s and traveled a distance of 1.00 × 102 m in 12.11s. What would

the magnitude of Rosendahl’s acceleration be in this case?

15. In 1991, four English teenagers built an electric car that could attain a

speed 30.0 m/s. Suppose it takes 8.0 s for this car to accelerate from 

18.0 m/s to 30.0 m/s. What is the magnitude of the car’s acceleration?
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4. vi = vavg = 518 km/h

vf = (0.600) vavg

∆t = 2.00 min

vavg = �518 
k

h

m
��60

1

m

h

in
��11

0

k

3

m

m
� = 8.63 × 103 m/min

∆x = 1
2

(vi + vf)∆t = 1
2

[vavg + (0.600) vavg]∆t = 1
2

(1.600)(8.63 × 103 m/min)(2.00 min)

∆x = 13.8 × 103 m = 13.8 km

Givens Solutions

5. ∆t = 30.0 s

vi = 30.0 km/h

vf = 42.0 km/h

∆x = 1
2

(vi + vf)∆t = 1
2

(30.0 km/h + 42.0 km/h) �36

1

0

h

0 s
�(30.0 s) 

∆x = 1
2

�72.0 
k

h

m
��36

1

0

h

0 s
�(30.0 s)

∆x = 3.00 × 10−1 km = 3.00 × 102 m

1. vi = 186 km/h

vf = 0 km/h = 0 m/s

a = −1.5 m/s2

∆t = 
vf −

a

vi = = 
−
−

5

1

1

.5

.7

m

m

/s

/
2
s

 = 34 s

0 m/s − (186 km/h) �36

1

0

h

0 s
� �11

0

k

3

m

m
�


−1.5 m/s2

Additional Practice D

6. vf = 96 km/h

vi = 0 km/h

∆t = 3.07 s

∆x = 1
2

(vi + vf)∆t = 1
2

(0 km/h + 96 km/h) �36

1

0

h

0 s
��11

0

k

3

m

m
�(3.07 s)

∆x = 1
2

�96 × 103 
m

h
�(8.53 + × 10−4 h) = 41 m

7. ∆x = 290.0 m

∆t = 10.0 s

vf = 0 km/h = 0 m/s

vi = 
2

∆
∆
t

x
 − vf = 

(2)(

1

2

0

9

.

0

0

.0

s

m)
 − 0 m/s = 

(Speed was in excess of 209 km/h.)

58.0 m/s = 209 km/h

8. ∆x = 5.7 × 103 km

∆t = 86 h

vf = vi + (0.10) vi

vf + vi = 
2

∆
∆
t

x


vi (1.00 + 0.10) + vi = 
2

∆
∆
t

x


vi = 
(2)

(

(

2

5

.

.

1

7

0

×
)(

1

8

0

6

3

h

k

)

m)
 = 63 km/h

9. vi = 2.60 m/s

vf = 2.20 m/s

∆t = 9.00 min

∆x = 1
2

(vi + vf)∆t = 1
2

(2.60 m/s + 2.20 m/s)(9.00 min)�
m

60

in

s
� = 1

2
(4.80 m/s)(5.40 × 102 s)

∆x = 1.30 × 103 m = 1.30 km

2. vi = −15.0 m/s

vf = 0 m/s

a = +2.5 m/s2

vi = 0 m/s

vf = +15.0 m/s

a = +2.5 m/s

For stopping:

∆t1 = 
vf

a

− vi = 
0 m/s

2

−
.5

(−
m

1

/

5

s

.
2

0 m/s)
 = 

1

2

5

.5

.0

m

m

/s

/
2
s

 = 6.0 s

For moving forward:

∆t2 = 
vf

a

− vi = = 
1

2

5

.5

.0

m

m

/s

/
2
s

 = 6.0 s

∆t tot = ∆t1 + ∆t2 = 6.0 s + 6.0 s = 12.0 s

15.0 m/s − 0.0 m/s


2.5 m/s2
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3. vi = 24.0 km/h

vf = 8.0 km/h

a = −0.20 m/s2

∆t = 
vf −

a

vi

∆t =

∆t = = 22 s

�−16.0 
k

h

m
��36

1

0

h

0 s
��11

0

k

3

m

m
�


−0.20 m/s2

(8.0 km/h − 24.0 km/h) �36

1

0

h

0 s
� �11

0

k

3

m

m
�


−0.20 m/s2

4. v1 = 65.0 km/h

vi,2 = 0 km/h

a2 = 4.00 × 10−2 m/s2

∆x = 2072 m

For cage 1:

∆x = v1∆t1

∆t1 = 
∆
v1

x
 = =

For cage 2:

∆x = vi,2∆t2 + 1
2

a2∆t2
2

Because vi,2 = 0 km/h,

∆t2 = �
2

a

∆�
2

x
� = �

4.�0

(2

0�)

×
(�2

1

0�0

7
−�2

2� m

m�)

/s�2� =

Cage 1 reaches the bottom of the shaft in nearly a third of the time required for cage 2.

322 s

115 s
2072 m



(65.0 km/h)�36

1

0

h

0 s
� �110k

3

m

m
�

5. ∆x = 2.00 × 102 m

v = 105.4 km/h

vi,car = 0 m/s

a. ∆t = = =

b. ∆x = vi,car ∆t + 1
2

acar∆t2

acar = 
2

∆
∆
t2

x
 = 

(2)(2

(

.

6

0

.

0

83

×
s

1

)

0
2

2 m)
 = 8.57 m/s2

6.83 s
2.00 × 102 m



�105.4 
k

h

m
� �36

1

0

h

0 s
� �110k

3

m

m
�

∆x

v

Givens Solutions

7. vi = 3.17 × 102 km/h

vf = 2.00 × 102 km/h

∆t = 8.0 s

a = 
vf

∆
−
t

vi =

a = =

∆x = vi∆t + 1
2

a∆t2 = (3.17 × 102 km/h)�36

1

0

h

0 s
��11

0

k

3

m

m
�(8.0 s) + 1

2
(−4.1 m/s2)(8.0 s)2

∆x = (7.0 × 102 m) + (−130 m) = +570 m

−4.1 m/s2

(−117 km/h)�36

1

0

h

0 s
��11

0

k

3

m

m
�


8.0 s

(2.00 × 102 km/h − 3.17 × 102 km/h)�36

1

0

h

0 s
��11

0

k

3

m

m
�


8.0 s

6. vi = 6.0 m/s

a = 1.4 m/s2

∆t = 3.0 s

∆x = vi∆t + 1
2

a∆t2 = (6.0 m/s)(3.0 s) + 1
2

(1.4 m/s2)(3.0 s)2 = 18 m + 6.3 m = 24 m
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10. vi = 24.0 m/s

a = −0.850 m/s2

∆t = 28.0 s

vf = vi + a∆t = 24.0 m/s + (− 0.850 m/s2)(28.0 s) = 24.0 m/s − 23.8 m/s = +0.2 m/s

Givens Solutions

11. a = +2.67 m/s2

∆t = 15.0 s

∆x = +6.00 × 102m

vi ∆t = ∆x − 1
2

a∆t2

vi = 
∆
∆

x

t
 − 1

2
a∆t = 

6.00

15

×
.0

10

s

2 m
 − 1

2
(2.67 m/s2)(15.0 s) = 40.0 m/s − 20.0 m/s = +20.0 m/s

12. a = 7.20 m/s2

∆t = 25.0 s

vf = 3.00 × 102 ms

vi = vf − a∆t

vi = (3.00 × 102 m/s) − (7.20 m/s2)(25.0 s) = (3.00 × 102 m/s) − (1.80 × 102 m/s) 

vi = 1.20 × 102 m/s

13. vi = 0 m/s

∆x = 1.00 × 102 m

∆t = 12.11 s

∆x = vi∆t + 1
2

a∆t2

Because vi = 0 m/s,

a = 
2

∆
∆
t2

x
 = 

(2)(

(

1

1

.0

2

0

.1

×
1

1

s)

0
2

2 m)
 = 1.36 m/s2

8. vi = 0 m/s

vf = 3.06 m/s

a = 0.800 m/s2

∆t2 = 5.00 s

∆t1 = 
vf

a

− vi = 
3.0

0

6

.

m

80

/

0

s

m

−
/

0

s2
m/s

 = 3.82

∆x1 = vi∆t1 + 1
2

a∆t1
2 = (0 m/s) (3.82 s) + 1

2
(0.800 m/s2) (3.82 s)2 = 5.84 m

∆x2 = vf∆t2 = (3.06 m/s)(5.00 s) = 15.3 m

∆xtot = ∆x1 + ∆x2 = 5.84 m + 15.3 m = 21.1 m

9. vf = 3.50 × 102 km/h

vi = 0 km/h = 0 m/s

a = 4.00 m/s2

∆t = 
(vf

a

− vi) = =

∆x = vi∆t + 1
2

a∆t2 = (0 m/s)(24.3 s) + 1
2

(4.00 m/s2)(24.3 s)2

∆x = 1.18 × 103 m = 1.18 km

24.3 s

(3.50 × 102 km/h − 0 km/h) �36

1

0

h

0 s
� �11

0

k

3

m

m
�


(4.00 m/s2)

14. vi = 3.00 m/s

∆x = 1.00 × 102 m

∆t = 12.11 s

a = 
2(∆x

∆
−
t 2

vi∆t)
 =

a =

a = 
(

(

2

1

)

2

(

.

6

1

4

1

m

s)2
)

 = 0.87 m/s2

(2)(1.00 × 102 m − 36.3 m)


(12.11 s)2

(2)[1.00 × 102 m − (3.00 m/s)(12.11 s)]


(12.11 s)2

15. vf = 30.0 m/s

vi = 18.0 m/s

∆t = 8.0 s

a = 
vf

∆
−
t

vi = = 
12

8

.0

.0

m

s

/s
 = 1.5 m/s230.0 m/s − 18.0 m/s


8.0 s
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