Date ______ Period _____ Name _____

CHAPTER 4

Study Guide

Forces in One Dimension

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.

agent	force	Newton's second law	
apparent weight	free-body diagram	Newton's third law	
contact force	gravitational force	normal force	
drag force	inertia	system	
equilibrium	interaction pair	tension	
external world	net force	terminal velocity	
field force	Newton's first law	weightlessness	
1	Everything surround	ding a system that exerts forces on it is the	
2	The attractive force the	that exists between all objects with mass is	
3	moving will contin	rest will remain at rest, and an object that is ue to move in a straight line with constant f the net force acting on the object is zero." This tent of	
4.	An action exerted on an object that causes a change in motion is $a(n)$		
5	A force that is exerted without contact is a(n)		
6	Two forces that are tudes are a(n)	in opposite directions and have equal magni-	
7	A force exerted by any segment of a rope or string on an adjoining segment is		
8	The vector sum of t	wo or more forces acting on an object is the	
9	The net force on an	object in is zero.	
10.	A force exerted by a a(n)	fluid on an object moving through the fluid is	
I1		f a body is directly proportional to the net force proportional to its mass." This sentence is a	
12.		n a scale by an object and other forces acting he	

4 Study Guide

continued

Section 4.1 Force and Motion

In your textbook, read about Newton's first and second laws and combining forces on pages 92–95. *For each statement below, write* true *or* false.

- **1.** Newton's second law can be written as the equation $a = F_{\text{net}}/m$.
- **2.** _____ In the ideal case of zero resistance, a ball rolling on a level surface will accelerate.
- **3.** _____ The acceleration of an object and the net force acting on it are proportional.
- **4.** _____ Force and acceleration are scalar quantities.
- **5.** Gravity is a field force.
- **6.** _____ When the net forces acting on an object sum to zero then the object is accelerating.
- **7.** According to Newton's first law, an object that is moving will continue to move in a straight line and at a constant speed if and only if the net force acting on it is greater than zero.
- **8.** _____ Acceleration is a change in velocity caused by an unbalanced force.

In your textbook, read about free-body diagrams and equilibrium on pages 89 and 95, respectively. Refer to the diagrams below to answer questions 9-16. Circle the letter of the choice that best completes the statement or answers the question.

- **9.** The agent of F_N is _____.
 - a. the bowl

c. friction

b. Earth

- **d.** the shelf
- **10.** The agent of F_g is _____.
 - a. the bowl

c. friction

b. Earth

- **d.** the shelf
- **11.** What part of Diagram 2 best represents the bowl in equilibrium?
 - **a.** A

c. C

b. B

- **d.** D
- **12.** Which part of Diagram 1 best represents the weight force of the bowl sitting on a shelf?
 - **a.** A

c. C

- **13.** F_N is a symbol that represents the _____ force.
 - a. friction

c. normal

b. tension

- d. weight
- **14.** The magnitude of the net force on the bowl in equilibrium is _____.
 - a. F_N

- **d.** $2F_g$
- **15.** Which of these is true when the bowl is in equilibrium?
 - **a.** $F_{\rm N} = F_{\rm g}$

 $\mathbf{c.} \quad F_{\mathbf{N}} > F_{\mathbf{g}}$

b. $F_{\rm N} \ge F_{\rm g}$

 $d. F_{N} < F_{g}$

Study Guide

continued

- **16.** Which part of Diagram 2 best represents the bowl if it falls off the shelf?

c. C

b. B

d. D

Draw a free-body diagram of each situation.

17. A rocket immediately after vertical liftoff

18. A penny sliding at constant velocity on a desktop

19. A penny immediately after sliding off a desktop

Using Newton's Laws Section 4.2

8. having an apparent weight of zero

In your textbook, read about mass, weight, and apparent weight on pages 96-98. For each term on the left, write the letter of the matching item.

1. name of gravitational force acting on object 2. magnitude of acceleration caused by gravity **3.** symbol for the acceleration caused by gravity 4. symbol for the due to gravity force **5.** expression for the weight of an object 6. unit of force

7. property of an object that does not vary from location to location

b. newton

a. g

- c. weight **d.** 9.8 m/s^2
- e. weightlessness
- f. mg
- g. $F_{\rm g}$
- h. mass

In your textbook, read about scales and apparent weight on pages 96-98.

Read the description below and refer to the diagram at right to answer questions 9-14. Circle the letter of the choice that best completes the statement or answers the question.

A 1.0-kg mass at rest is suspended from a spring scale. The direction of positive forces that are acting or could act on the 1.0-kg mass are shown to the right.

9. The 1.0-kg mass and spring scale are being lifted at a constant speed. The net force on the mass is _____.

c.
$$-10 \text{ N}$$

b.
$$+10 \text{ N}$$

d.
$$+20 \text{ N}$$

10. The 1.0-kg mass and spring scale are being lifted so that the 1.0-kg mass is being accelerated in the positive upward direction at 1.0 m/s². What is the net force acting on the mass?

c.
$$-1 N$$

b.
$$+1 \text{ N}$$

d.
$$+20 \text{ N}$$

11. In problem 10, what is the relationship among the magnitudes of the forces acting on the mass?

a.
$$F_{\text{net}} = F_{\text{scale}} + F_{g}$$

c.
$$F_{\text{net}} = -(F_{\text{scale}} + F_{\text{g}})$$

b.
$$F_{\text{net}} = F_{\text{scale}} - F_{\text{g}}$$

d.
$$F_{\text{net}} = F_{\text{g}} - F_{\text{scale}}$$

12. In problem 10, what is the spring scale reading?

a.
$$<10 \text{ N}$$

c.
$$> 10 \text{ N}$$

13. If the scale is accidentally dropped, the net force acting on the 1.0-kg mass is ______.

c.
$$-10 \text{ N}$$

b.
$$+10 \text{ N}$$

d.
$$+20 \text{ N}$$

14. If the scale is accidentally dropped, the reading of the spring scale as it falls is _____.

c.
$$-10 \text{ N}$$

b.
$$+10 \text{ N}$$

d.
$$+20 \text{ N}$$

In your textbook, read about the drag force and terminal velocity on pages 100–101. For each statement below, write true or rewrite the italicized part to make the statement true.

- ____ A fluid exerts a drag force on an object moving through it in the same direction as the motion of the object.
- The drag force is dependent on the properties of the object, the properties of the fluid the object is moving through, and the motion of the object.

4 Study Guide

continued

A light object with a large surface area is *less* affected by the drag force than a more compact object is when both objects are falling.

The terminal velocity of a falling object is reached when *the object impacts on a surface*.

Section 4.3 Interaction Forces

In your textbook, read about interaction pairs on pages 102–104. *Refer to the diagram below to complete Table 1.*

Table 1			
Force	Magnitude	Direction	
F book 1 on book 2			
F book 2 on book 1			
F book 2 on desktop			
F _{desktop on book 2}			
F books 1 and 2 on desktop			
F desktop on books 1 and 2			

In your textbook, read about tension on pages 105–106.

For each statement below, write true or false.

- **1.** A book lying on a table involves tension.
- **2.** A chandelier hanging from a ceiling involves tension.
- **3.** _____ Two teams participating in a tug-of-war involves tension.
- **4.** _____ An automobile moving along a road involves tension.
- **5.** An elevator moving in a building shaft involves tension.
- **6.** A basketball passed from one player to another involves tension.
- **7.** A horse pulling a cart involves tension.
- **8.** A truck towing a boat behind it involves tension.
- **9.** _____ Water skiing involves tension.
- **10.** A trapeze act involves tension.
- **11.** Paddling a canoe involves tension.
- **12.** Parachuting involves tension.