Date	Period	Name		
1 Study Guide				
A Physics Toolkit				
Vocabulary Review				
Write the term that correctly completes the statement. Use each term once.				
accuracy	independent variable	measurement	significant digits	
dependent variable	inverse relationship	physics	scientific law	

accuracy	independent varia	able measurement	significant digits
dependent variable	inverse relationsh	nip physics	scientific law
dimensional analysis	line of best fit	precision	scientific method
hypothesis	linear relationshi	p quadratic relationsh	ip scientific theory
1	The study	of matter and energy is	
2	The the world	is a systematic way to obser.	ve, experiment, and analyze
3	The valid	digits in a measurement are o	called the
4	A(n) which an variable.	_ describes the relationship l increase in one variable resul	between two variables in ts in the decrease of another
5	On a grap of the dat	bh, the is the line draw a points.	n as close as possible to all
6	A(n)	_ is an educated guess about	how variables are related.
7	The experimer	is the factor that is changed nt.	or manipulated during an
8	A(n)	_ is description of a rule of r	nature.
9	A(n) standard.	_ is a comparison between a	n unknown quantity and a
10	A straight the two va	line on a graph shows that th ariables.	nere is a(n) between
11	A(n)	_ is an explanation supporte	d by experimental results.
12	des the real va	scribes how well the results of alue.	f a measurement agree with
13	The	is the factor that depends on	n the independent variable.
14	The methor cancelled,	od of treating units as algebra is called	aic quantities, which can be

	Name _	
1 Study G	uide	continued
15	A(n) exists when another.	n one variable depends on the square of
16	The degree of exactness	s of a measurement is called
Section 1.1 Mat	nematics and	Physics
In your textbook, read about m	athematics in physics on pa	ges 4–5.
Write the term that correctly con	npletes the statement. Use ea	ch term once.
dimensional analysis	experiments	theories
equations	graphs	units
experimental data	results	
Physicists do (1)	, make obse	ervations, and collect
(2)	They predict the (3)	using different
models. They create (\mathbf{A})	to d	escribe their observations. Due to the
mathematical nature of their w	ork physicists can enter pup	abers into (5)
	ork, physicists can enter nun	
to model observations and mal	xe predictions. The numerica	Il values in an equation are also described by
(6)	, such as amperes, ohms,	and volts. (7)
is the method of treating the un	nits as algebraic quantities, w	which can be cancelled. Varying numerical
results from equations can be p	blotted as (8)	
In vour textbook, read about SI	units on pages 5–6.	
For each term on the left, write	the letter of the matching ite	m on the right.
9. base quantity of t	emperature	a. meter
10 base quantity of a	electric current	b. 10^{-2}
		c. kelvin
II. base quantity of I	ength	d. 10^{-12}
12. base quantity of t	ime	e. ampere
13. base amount of a	substance	f. second
14. pico		g. 10 ⁶
15 . centi		h. mole
10. Centr		i. 10^{-6}
16. micro		

_____ **17.** mega

Name	
------	--

continued

In your textbo For each of th	ook, read about significant digits on page 7. e statements below, write true or rewrite the italicized part to make the statement true.	
18	When you perform any arithmetic operation and round off the last digit, this is the <i>most</i> precise part of the measurement.	
19	The figure 0.0730 has <i>two</i> significant digits.	
20	Answers derived with a calculator should be written <i>exactly as they appear on the calculator</i> .	
In your textbo <i>Number the f</i>	ook, read about scientific methods on pages 8–10. ollowing steps in the order in which scientists study problems.	
21.	Draw a conclusion.	
22.	Compare experimentation with careful measurements and analyses of results.	
23.	Test deductions to determine if they are valid.	
Indicate which	h step in the scientific method best describes the statements in questions 24–29. Explain your	

Study Guide

24. A basketball is rolling on the ground. It continues to move even though no one is pushing it.

- **25.** The velocity of the rolling basketball is 0.5 m/s.

answers. Use complete sentences.

26. In an isolated system, momentum does not change. For example, when a bowling ball hits a rolling basketball, the bowling ball slows down and the basketball speeds up. The increase in momentum of the basketball equals the decrease in momentum of the bowling ball.

27. There are two tracks that you can roll the basketball on. One track is very steep and the other is nearly flat. You guess that the basketball will travel faster down the steep track.

28. After recording the speeds of a basketball rolling down a steep track and on a flat track, you repeat the experiment, timing the ball a second time.

1 Study Guide

29. You observe multiple collisions between a basketball and a bowling ball and record data on their post collision velocities and directions. You explain your idea that since the bowling ball has a greater mass and is moving at greater velocity, it can always change the direction of the basketball that has a smaller mass and is moving at a slower velocity.

Section 1.2 Measurement

In your textbook, read about measurement on pages 11–14. *Circle the letter of the choice that best completes the statement.*

1. The apparent shift in position of an object when it is viewed from various angles is called _____. **c.** calibration **a.** parallax **b.** margin of error **d.** accuracy **2.** A device with very small divisions on its scale can measure with _____. **a.** scientific notation **c.** precision **b.** agreement **d.** fundamental units **3.** An atomic mass unit is measured at 1.660×10^{-27} kg, a number that has ______ significant digits. **a.** 1 **c.** 3 **d.** 4 **b.** 2 4. The NIST-Fl Cesium Fountain clock in Colorado is our standard for _____. **a.** significant digits **c.** measuring instruments **b.** accuracy **d.** calculating errors **5.** A comparison between an unknown quantity and a standard is referred to as a _____. a. margin of error **c.** measurement **d.** variables **b.** consistency _____ is a technique used to assure the accuracy of a measuring instrument. 6. **a.** Two-point calibration c. Analysis **b.** Precision **d.** Dimension **7.** The degree of possible error in a measurement is called its _____. **a.** fundamental unit **c.** precision balance **b.** mechanical quantity **d.** margin of uncertainty

continued

Name _

continued

Section 1.3 Graphing Data

In your textbook, read about nonlinear relationships on pages 17–18. *Refer to the graph to answer questions* 1–7.

- **1.** What sort of relationship is shown in this graph?
- 2. Which variable is the independent variable? Which is the dependent variable?
- **3.** Is the slope of this graph positive or negative?
- **4.** What are the units of the slope?
- **5.** Explain why the slope at 2.0 s is greater than the slope at 1.0 s.
- **6.** About how far does the ball fall in 1.8 s?
- **7.** The equation of the graph is $d = 5t^2$. How far would the ball fall in 2.4 s?

Refer to the graph to answer questions 8–12.

- 8. What sort of relationship is shown in this graph?
- 9. Is the slope of this graph positive or negative?
- **10.** What are the units of the slope?
- 11. What is the approximate current when the resistance is 25 ohms?
- **12.** Write an equation for this graph. (Hint: The equation takes the form xy = a, where *x* is resistance and *y* is current.)

Read about linear and nonlinear relationships in your textbook on pages 16–18. For each description on the left, write the letter of the matching term on the right.

13. the equation of a linear relationship**a.** hyperbola**14.** the shape of a graph of a linear relationship**b.** parabola**15.** the equation of an inverse relationship**c.** straight line**16.** the shape of the graph of an inverse relationship**d.** y = mx + b**17.** the equation of a quadratic relationship**e.** $y = ax^2 + bx^2 + c$ **18.** the shape of the graph of a quadratic relationship**f.** $y = \frac{a}{x}$

continued