\qquad
\qquad

CHAPTER
 Study Guide

A Physics Toolkit

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.
accuracy
dependent variable
dimensional analysis
hypothesis

independent variable	measurement
inverse relationship	physics
line of best fit	precision
linear relationship	quadratic relationship

significant digits scientific law scientific method scientific theory

1. \qquad The study of matter and energy is \qquad .
2. \qquad The \qquad is a systematic way to observe, experiment, and analyze the world.
3. \qquad The valid digits in a measurement are called the \qquad .
4. \qquad A(n) \qquad describes the relationship between two variables in which an increase in one variable results in the decrease of another variable.
5. \qquad On a graph, the \qquad is the line drawn as close as possible to all of the data points.
6. \qquad A(n) \qquad is an educated guess about how variables are related.
7. \qquad The \qquad is the factor that is changed or manipulated during an experiment.
8. \qquad A(n) \qquad is description of a rule of nature.
9. \qquad A(n) \qquad is a comparison between an unknown quantity and a standard.
10. \qquad A straight line on a graph shows that there is a(n) \qquad between the two variables.
11. \qquad A(n) \qquad is an explanation supported by experimental results.
12. \qquad
\qquad describes how well the results of a measurement agree with the real value.
13. \qquad The \qquad is the factor that depends on the independent variable.
14. \qquad The method of treating units as algebraic quantities, which can be cancelled, is called \qquad _.
\qquad
15. \qquad A(n) \qquad exists when one variable depends on the square of another.
16. \qquad The degree of exactness of a measurement is called \qquad -.

Section 1.1 Mathematics and Physics

In your textbook, read about mathematics in physics on pages 4-5.
Write the term that correctly completes the statement. Use each term once.

dimensional analysis	experiments	theories
equations	graphs	units
experimental data	results	

Physicists do (1) \qquad , make observations, and collect
(2) \qquad They predict the (3) \qquad using different
models. They create (4) \qquad to describe their observations. Due to the mathematical nature of their work, physicists can enter numbers into (5) \qquad to model observations and make predictions. The numerical values in an equation are also described by (6) \qquad , such as amperes, ohms, and volts. (7) \qquad is the method of treating the units as algebraic quantities, which can be cancelled. Varying numerical results from equations can be plotted as (8) \qquad -.

In your textbook, read about SI units on pages 5-6.
For each term on the left, write the letter of the matching item on the right.
9. base quantity of temperature
a. meter
10. base quantity of electric current
b. 10^{-2}
11. base quantity of length
c. kelvin
\qquad d. 10^{-12}
12. base quantity of time
e. ampere
13. base amount of a substance
f. second
g. 10^{6}
14. pico
h. mole
15. centi
i. 10^{-6}
\qquad

In your textbook, read about significant digits on page 7 .
For each of the statements below, write true or rewrite the italicized part to make the statement true.
18. \qquad When you perform any arithmetic operation and round off the last digit, this is the most precise part of the measurement.
19. \qquad The figure 0.0730 has two significant digits.
20. \qquad Answers derived with a calculator should be written exactly as they appear on the calculator.

In your textbook, read about scientific methods on pages 8-10.
Number the following steps in the order in which scientists study problems.
__ 21. Draw a conclusion.
\qquad 22. Compare experimentation with careful measurements and analyses of results.
\qquad 23. Test deductions to determine if they are valid.

Indicate which step in the scientific method best describes the statements in questions 24-29. Explain your answers. Use complete sentences.
24. A basketball is rolling on the ground. It continues to move even though no one is pushing it.
25. The velocity of the rolling basketball is $0.5 \mathrm{~m} / \mathrm{s}$.
26. In an isolated system, momentum does not change. For example, when a bowling ball hits a rolling basketball, the bowling ball slows down and the basketball speeds up. The increase in momentum of the basketball equals the decrease in momentum of the bowling ball.
\qquad
\qquad
27. There are two tracks that you can roll the basketball on. One track is very steep and the other is nearly flat. You guess that the basketball will travel faster down the steep track.
\qquad
\qquad
28. After recording the speeds of a basketball rolling down a steep track and on a flat track, you repeat the experiment, timing the ball a second time.
\qquad
\qquad
\qquad
29. You observe multiple collisions between a basketball and a bowling ball and record data on their post collision velocities and directions. You explain your idea that since the bowling ball has a greater mass and is moving at greater velocity, it can always change the direction of the basketball that has a smaller mass and is moving at a slower velocity.

Section 1.2 Measurement

In your textbook, read about measurement on pages 11-14.
Circle the letter of the choice that best completes the statement.

1. The apparent shift in position of an object when it is viewed from various angles is called \qquad
a. parallax
c. calibration
b. margin of error
d. accuracy
2. A device with very small divisions on its scale can measure with \qquad .
a. scientific notation
c. precision
b. agreement
d. fundamental units
3. An atomic mass unit is measured at $1.660 \times 10^{-27} \mathrm{~kg}$, a number that has \qquad significant digits.
a. 1
b. 2
c. 3
d. 4
4. The NIST-Fl Cesium Fountain clock in Colorado is our standard for \qquad
a. significant digits
c. measuring instruments
b. accuracy
d. calculating errors
5. A comparison between an unknown quantity and a standard is referred to as a \qquad .
a. margin of error
c. measurement
b. consistency
d. variables
6. \qquad is a technique used to assure the accuracy of a measuring instrument.
a. Two-point calibration
c. Analysis
b. Precision
d. Dimension
7. The degree of possible error in a measurement is called its \qquad .
a. fundamental unit
c. precision balance
b. mechanical quantity
d. margin of uncertainty
\qquad

Section 1.3 Graphing Data

In your textbook, read about nonlinear relationships on pages 17-18.
Refer to the graph to answer questions 1-7.

1. What sort of relationship is shown in this graph?
2. Which variable is the independent variable? Which is the dependent variable?
\qquad
3. Is the slope of this graph positive or negative?
\qquad
4. What are the units of the slope?
5. Explain why the slope at 2.0 s is greater than the slope at 1.0 s .
6. About how far does the ball fall in 1.8 s ?
7. The equation of the graph is $d=5 t^{2}$. How far would the ball fall in 2.4 s ?
\qquad

Refer to the graph to answer questions 8-12.

8. What sort of relationship is shown in this graph?
9. Is the slope of this graph positive or negative?
10. What are the units of the slope?
\qquad
11. What is the approximate current when the resistance is 25 ohms?
12. Write an equation for this graph. (Hint: The equation takes the form $x y=a$, where x is resistance and y is current.)

Read about linear and nonlinear relationships in your textbook on pages 16-18. For each description on the left, write the letter of the matching term on the right.
\qquad 13. the equation of a linear relationship
a. hyperbola
14. the shape of a graph of a linear relationship
b. parabola
15. the equation of an inverse relationship
c. straight line
\qquad 16. the shape of the graph of an inverse relationship
d. $y=m x+b$
\qquad 17. the equation of a quadratic relationship
e. $y=a x^{2}+b x^{2}+c$
18. the shape of the graph of a quadratic relationship
f. $y=\frac{a}{x}$

