A 40.0 kg block is connected to an empty 2.00 kg bucket by a cord running over a pulley. The coefficient of static friction between the table and the block is . 650 and the coefficient of kinetic friction between the table and the block is .380 . Sand is gradually added to the bucket until the system just begins to move. Calculate the mass of the sand added to the bucket.

A clerk moves a box of cans down an aisle by pulling on a rope attached to the box. The clerk pulls with a force of 300.0 N at and angle of 25.0° with the horizontal. The box has a mass of 50.0 kg , the coefficient of static friction between the box and the floor is .400 , and the coefficient of kinetic friction between the box and the floor is .380 . If it started from rest, how far does the box go in 3.0 s?

Chapter 6 - Motion in Two Dimensions

Newton's $1^{\text {st }}$ Law of Motion (Law of Inertia)

An object at rest will remain at rest, and an object in motion will continue to move in a straight line with constant speed, if and only if the net force acting on that object is zero

Newton's $1^{\text {st }}$ Law of Motion (Law of Inertia)
An object at rest will remain at rest, and an object in motion will continue to move in a straight line with constant speed, if and only if the net force acting on that object is zero

Newton's $1^{\text {st }}$ Law of Motion (Law of Inertia)
An object at rest will remain at rest, and an object in motion will continue to move in a straight line with constant speed, if and only if the net force acting on that object is zero object in motion will continue to move in a straight line with constant speed, if and only

the motion of a body when air resistance is negligible and the action can be considered due to gravity alone

6.1 Projectile Motion

6.1 Projectile Motion

To solve projectile motion problems all that is needed are the kinematics equations

A plane traveling at $115 \mathrm{~m} / \mathrm{s}$ East at an altitude of 1050. m is getting ready to drop a package of supplies to a target below. What is the time required for the package to hit the ground?

6.1 Projectile Motion

[^0]1. Watch the clip and determine the length of the pass.
2. Using a stopwatch determine the time the ball is in the air.
3. From this information, determine the horizontal velocity of the ball $\left(v_{x}\right)$.
4. Determine the initial vertical velocity of the ball $\left(v_{i y}\right)$.
5. Determine the maximum height of the ball.
6. Determine the initial velocity of the ball.

A placekicker kicks a football at an angle of 40.0° above the horizontal. The initial speed of the ball is $22 \mathrm{~m} / \mathrm{s}$. Ignore air resistance. What is the maximum height of the ball?
What is the hang time of the kick?
What is the football's range?
6.1 Projectile Motion

In the video clip above, Tom Brady throws a touchdown pass:

6.1 Projectile Motion

A placekicker must kick a football from a point 36.0 m from the goalpost, and the ball must clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of $20.0 \mathrm{~m} / \mathrm{s}$ at an angle of 53 degrees to the horizontal.
a) By how much does the ball clear or fall short of clearing the crossbar?
b) Does the ball approach the crossbar while still rising or while falling?

6.2 Circular Motion

Subtract the initial velocity v_{1} from v_{2}, to get the Δv

Recall that a change in velocity, Δv, is an acceleration

centripetal acceleration - the acceleration of an object for an object in uniform circular motion
centripetal means "center-seeking"

6.2 Circular Motion

What is the equation for Newton's $2^{\text {nd }}$ Law?

$$
\begin{aligned}
\Sigma F & =m a \\
\Sigma F_{c} & =m a_{c}
\end{aligned}
$$

Remember, $a_{c}=\frac{v^{2}}{r}$

$$
\begin{aligned}
& \text { centripetal force } \\
& \Sigma F_{c}=\frac{m v^{2}}{r}
\end{aligned}
$$

6.2 Circular Motion

Compare the maximum speeds at which a $1150 . \mathrm{kg}$ car can safely negotiate an unbanked turn (radius $=50.0 \mathrm{~m}$) in dry weather $\left(\mu_{\mathrm{s}}=.900\right)$ and icy weather $\left(\mu_{\mathrm{s}}=.100\right)$

6.2 Circular Motion

6.2 Circular Motion

A 20.0 kg child moves with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ when sitting 4.8 m from the center of a merry-go-round. Calculate the
a) The child's centripetal acceleration
b) The centripetal force acting on the child

A 1500 kg car rounds a circular turn of radius 25.0 m . If the road is flat and the coefficient of static friction between the tires and the road is 0.70 , how fast can the car go without skidding?

6.2 Circular Motion

What is the direction of the velocity vector of an accelerating object moving in uniform circular motion?
A. Toward the center of the circle.
B. Away from the center of the circle.
C. Along the circular path.
D. Tangent to the circular path.

You swing a yo-yo around your head in a horizontal circle. Then you swing another yo-yo with twice the mass of the first one, but you don't change the length of the string or the period. How do the tensions in the string differ?

6.3 Relative Velocity

To move directly across the river, the boat must head upstream at an angle θ

Pay attention to the subscripts:

$$
\mathrm{v}_{\mathrm{bw}}+\mathrm{v}_{\mathrm{ws}}=\mathrm{v}_{\mathrm{bs}}
$$

6.3 Relative Velocity

An airplane has a speed of $285 \mathrm{~km} / \mathrm{h}$ relative to the air. There is a wind blowing at $95 \mathrm{~km} / \mathrm{h}$ at 30.0° north of east relative to Earth. In which direction should the plane head to land at an airport due north of its present location?

What is the plane's speed relative to the ground?

6.3 Relative Velocity

Which of the following formulas is the general form of relative velocity of objects a, b, and c ?
A. $\mathrm{V}_{\mathrm{ab}}+\mathrm{V}_{\mathrm{ac}}=\mathrm{V}_{\mathrm{bc}}$
B. $\mathrm{V}_{\mathrm{ab}}-\mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{ac}}$
C. $\mathrm{v}_{\mathrm{ab}}+\mathrm{v}_{\mathrm{bc}}=\mathrm{v}_{\mathrm{ac}}$
D. $\mathbf{V}_{\mathrm{ab}}-\mathrm{V}_{\mathrm{ac}}=\mathrm{V}_{\mathrm{bc}}$

Chapter 6 Vocabulary

6.2 Circular Motion

Physlet: Uniform Circular Motion

play	pause	<step	step>>	reset

[^0]: In the video clip above, Tom Brady throws a touchdown pass:

