

The rope in the above picture has a tension of 45.0 N and is angled 30.0° to the floor. Find the work done by the force in pulling the crate a distance of 75.0 m .

Determine the work done in each of the above scenarios

You lift a 7.30 kg bowling ball from the storage rack and hold it up to your shoulder. The storage rack is 0.610 m above the floor and your shoulder is 1.12 m about the floor.
a) When the ball is at your shoulder, what is the the ball's gravitational potential energy relative to the floor?
b) When the ball is at your shoulder, what is the the ball's gravitational potential energy relative to the the storage rack
c) How much work was done by gravity as you lifted the ball from the rack to shoulder level?

Neither Sarah nor Susan possesses gravitational potential energy.

11.1 The Many Forms of Energy

If an object moves away from the Earth, energy is stored in the system as the result of the force between the object and the Earth What is this stored energy called?

Rotational kinetic energy
Gravitational potential energy
Elastic potential energy
Linear kinetic energy

11.1 The Many Forms of Energy

Two girls, Sarah and Susan, having same masses are jumping on a floor. If Sarah jumps to a greater height, what can you say about the gain in their gravitational potential energy?

Since both have equal masses, they gain equal gravitational potential energy.

Gravitational potential energy of Sarah is greater than that of Susan Sarah. tusa.

11.1 The Many Forms of Energy

Two girls, Sarah and Susan, having same masses are jumping on a floor. If Sarah jumps to a greater height, what can you say about the gain in their gravitational potential energy?

```
Since both have equal masses, they gain equal gravitational
potential energy.
Gravitational potential energy of Sarah is greater than that of
Susan.
Gravitational potential energy of Susan is greater than that of
Sarah.
Neither Sarah nor Susan possesses gravitational potential energy.
```


11.2 Conservation of Energy
mechanical energy - the sum of the kinetic energy and gravitational potential energy of a system

In the absence of friction and air resistance (nonconservative forces), this ball will have the same KE whether it rolls down the ramp or drops straight down. The path the ball takes does not matter.

11.2 Conservation of Energy

A 6.00 m rope is tied to a tree limb and used as a swing. A person starts from rest with the rope held in a horizontal orientation. Ignoring friction and air resistance, how fast is the person moving at the lowest point in the circular arc of the swing?
law of conservation of energy - in a closed, isolated system, energy can neither be created nor destroyed; rather energy is conserved

11.2 Conservation of Energy

Pendulums stop, roller coasters require lower and lower hills, a bouncing ball doesn't reach the same height over and over again.

Where does the energy go?

1. air resistance
2. thermal energy - a measure of the internal motion of an object's particles (friction increases thermal energy)

路

This figure shows two possible paths by which a person, starting from rest at the top of a cliff, can enter the water below. Suppose that he enters the water at a speed of 13.0 m / s via path 1 . How fast is he moving on path 2 when he releases the rope at a height of 5.20 m above the water?

A cue ball, with mass of 0.16 kg , rolling at $4.0 \mathrm{~m} / \mathrm{s}$, hit a stationary three-ball of the same mass. The cue ball comes to rest after striking the three-ball. What is the speed of the threeball after the collision? $4.0 \mathrm{~m} / \mathrm{s}$

What is the total kinetic energy before the collision?

What is the total kinetic energy after the collision?

What happened to the kinetic energy?

11.2 Conservation of Energy

In an accident on a slippery road, a compact car with a mass of 575 kg moving at $15.0 \mathrm{~m} / \mathrm{s}$ smashes into the rear end of a car with mass 1575 kg moving at $5.00 \mathrm{~m} / \mathrm{s}$ in the same direction.
a) What is the final velocity of the cars if they lock together?
b) How much kinetic energy was lost during the collision?

11.2 Conservation of Energy
 Two brothers, Jason and Jeff, of equal masses jump from a house $3-\mathrm{m}$ high. If Jason jumps on the ground and Jeff jumps on a platform 2 -m high, what can you say about their kinetic energy?

The kinetic energy of Jason when he reaches the ground is greater than the kinetic energy of Jeff when he lands on the platform.
The kinetic energy of Jason when he reaches the ground is less than the kinetic energy of Jeff when he lands on the platform.
The kinetic energy of Jason when he reaches the ground is equal to the kinetic energy of Jeff when he lands on the platform.

Neither Jason nor Jeff possesses kinetic energy

10.1 Energy and Work

Three friends, Brian, Robert, and David, participated in a 200m race. Brian exerted a force of 240 N and ran with an average velocity of $5.0 \mathrm{~m} / \mathrm{s}$, Robert exerted a force of 300 N and ran with an average velocity of $4.0 \mathrm{~m} / \mathrm{s}$, and David exerted a force of 200 N and ran with an average velocity of $6.0 \mathrm{~m} / \mathrm{s}$. Who amongst the three delivered more power?

Brian

Robert

David

All the three players delivered same power

10.1 Energy and Work

Power - the rate at which work is done

Recall that $\mathrm{W}=\mathrm{F} \cdot$ d, so $P=\frac{W}{t}=\frac{F d}{t}=F \frac{d}{t}=F v$

$$
P=F v
$$

10.1 Energy and Work

Now since the product of force and velocity in case of all the three participants is same:

Power delivered by Brian $\rightarrow P=(240 \mathrm{~N})(5.0 \mathrm{~m} / \mathrm{s})=1.2 \mathrm{~kW}$
Power delivered by Robert $\rightarrow P=(300 \mathrm{~N})(4.0 \mathrm{~m} / \mathrm{s})=1.2 \mathrm{~kW}$
Power delivered by David $\rightarrow P=(200 \mathrm{~N})(6.0 \mathrm{~m} / \mathrm{s})=1.2 \mathrm{~kW}$

All the three players delivered same power.

Chapter 10 and 11 Vocabulary

work

reference level
kinetic energy
elastic potential energy
gravitational potential energy
watt
energy
joule
power
work-energy theorem
mechanical energy
elastic collision
inelastic collision
thermal energy
aw of conservation of energy

Definition:

1. The transfer of energy by
mechanical means: a constant force exerted on an object in the direction of motion times the object's displacement.

Chapter 10 and 11 Vocabulary

work
reference level
kinetic energy
elastic potential energy
gravitational potential energy
watt
energy
joule
power
work-energy theorem
mechanical energy
elastic collision
inelastic collision
thermal energy
law of conservation of energy

Chapter 10 and 11 Vocabulary

work
reference level
kinetic energy
elastic potential energy
gravitational potential energy Definition:
watt
6. The sum of the kinetic and
energy gravitational potential energy of a system.
joule
power
work-energy theorem
mechanical energy
elastic collision
inelastic collision
thermal energy
law of conservation of energy


```
Chapter 10 and 11 Vocabulary
    work
    reference level
    kinetic energy
    elastic potential energy
    gravitational potential energy
    watt
    energy
    joule
    power
    work-energy theorem
    mechanical energy
    elastic collision
    inelastic collision
    thermal energy
    law of conservation of energy
```


Chapter 10 and 11 Vocabulary	
work	
reference level	
kinetic energy	
elastic potential energy	Definition:
gravitational potential energy	11. States than in a closed,
watt	isolated system, energy is not
energy	coated or destroyed, but rather,
joule	
power	
work-energy theorem	
mechanical energy	
elastic collision	
inelastic collision	
thermal energy	
law of conservation of energy	

Chapter 10 and 11 Vocabulary	
work	
reference level	
kinetic energy	
elastic potential energy	Definition:
gravitational potential energy	12. A type of collision in which the
watt	kinetic energy before and after the
energy	collision remains the same
joule	
power	
work-energy theorem	
mechanical energy	
elastic collision	
inelastic collision	
thermal energy	
law of conservation of energy	

| Chapter 10 and 11 Vocabulary |
| :--- | :--- |
| \qquadAnswers:

 1. work
 2. inelastic collision
 3. energy
 4. joule
 5. thermal energy
 6. mechanical energy
 7. kinetic energy
 8. gravitational potential energy
 9. watt
 10. work-energy theorem
 11. law of conservation of energy
 12. elastic collision
 13. power
 14. elastic potential energy
 15. reference level |

