\qquad

cunvin

Energy, Work, and Simple Machines

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.
compound machine
efficiency
effort force
energy
ideal mechanical advantage
joule
kinetic energy
machine
mechanical advantage
power
resistance force
watt
work
work-energy theorem

1. \qquad can be calculated by comparing a machine's output work to its input work.
2. \qquad A(n) \qquad is a device that changes the magnitude or the direction of a force.
3. \qquad A(n) \qquad consists of two or more simple machines linked so that the resistance force of one machine becomes the effort force of the second machine. Th \qquad is the force exerted by a machine.
4. \qquad A \qquad is a unit of power defined as 1 joule per second.
5. \qquad The \qquad is the force exerted by a person on a machine.
6. \qquad The \qquad states that the work done on an object equals the change in kinetic energy of the object.
7. \qquad The ability of an object to produce a change in itself or its surroundings is called \qquad .
8. \qquad The energy that results from the motion of an object is called
9. \qquad The rate of doing work is called \qquad .
10. \qquad The ratio of the resistance force of a machine to its effort force is its
11. \qquad The \qquad is the SI unit used for work.
12. \qquad To calculate a machine's \qquad , compare the effort distance to the resistance distance.
13. \qquad When an applied force is multiplied by the distance through which the force is applied, \qquad is calculated.
\qquad

Section 10.1 Energy and Work

In your textbook, read about work and energy on pages 258-259.
For each phrase on the left, write the letter of the matching item.
\qquad

1. calculation of kinetic energy
a. W
b. Fd
2. calculation of work
c. $\frac{m v^{2}}{2}$
3. equivalent to $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
d. $W=\Delta K E$
e. J
4. statement that the work done on an object is equal to the
f. $K E$ object's change in kinetic energy
5. symbol for kinetic energy
6. symbol for work

In your textbook, read about work and energy change and calculating work on pages 259-263.
For each statement below, write true or rewrite the italicized part to make the statement true.
7. \qquad Through the process of doing work, energy can move between the external world and the system as the result of forces.
8. \qquad If the external world does work on the system, the quantity of work is negative.
9. \qquad If the external world does work on the system, the energy of the system increases.
10. \qquad If the system does work on the external world, the energy of the system remains the same.
11. \qquad In the equation $W=F d$, it is assumed that the force varies and is exerted in the direction of displacement.
12. \qquad In the equation $W=F d \cos \theta$, angle θ is the angle between the direction of the force and the direction of the displacement.

For questions 13-15, draw an arrow in the shaded box that shows the direction of the force.
13. $W>0$

d \rightarrow
14. $W=0$

15. $W<0$

\qquad

The force-displacement graph of a crate that was pushed horizontally is shown at right. Refer to the graph to answer questions 16-21.
16. How far did the crate move horizontally?
17. What was the magnitude of the force that acted on the crate?
18. What does the area under the graph represent?

19. How much work was done in moving the crate 0.10 m ?
20. Suppose you wanted to know the amount of work done in moving the crate 0.40 m . First, find the amount of work done using the graph. Then use the equation for calculating work to find the amount of work. How do your answers compare?
21. On the force-displacement graph above, draw a line that shows that the force uniformly increases from 30.0 N to 40.0 N as the crate is pushed from 0.50 m to 0.70 m . What is the total amount of work done on the crate as it moves from 0.0 m to 0.70 m ?
\qquad

In your textbook, read about power on pages 263-265.
For each term on the left, write the letter of the matching item.
\qquad
22. calculation of power
a. kW
23. rate of doing work
b. power
24. symbol for power
c. P
25. unit of power
d. $\frac{W}{t}$
26. 1000 W
e. watt

Section 10.2 Machines

In your textbook, read about the benefits of machines on pages 266-268.
For each statement below, write true or rewrite the italicized part to make the statement true.

1. \qquad The term machine refers to complex tools.
2. \qquad A machine eases the load by changing only the direction of a force.
3. \qquad Work is the use of mechanical means to transfer energy.
4. \qquad A machine can create energy.
5. \qquad A force that is exerted by a machine is the effort force.
6. \qquad The mechanical advantage of a machine is the product of its resistance force and its effort force.
7. \qquad If the mechanical advantage of a certain machine is 1.5 , the machine increases the effort force.
8. \qquad A real machine cannot have a mechanical advantage less than 1.
9. \qquad The ideal mechanical advantage of a pulley can be used to calculate the distance the effort force moves compared to the distance the resistance force moves.
10. \qquad If a machine transfers all of the energy applied to it, the output work is greater than the input work.
11. \qquad In a real machine, the input work is equal to the output work.
12. \qquad The efficiency of a machine is the ratio of work output to work input, expressed as a percentage.
13. \qquad The efficiency of an ideal machine is greater than 100 percent.
14. \qquad A machine with an efficiency of 1.2 requires a smaller effort force than a machine that has an efficiency of 2.2.
\qquad

In your textbook, read about compound machines on pages 269-272.

Circle the letter of the choice that best completes the statement or answers the question.

15. Which of the following items is not an example of a simple machine?
a. a crowbar
c. a bicycle
b. a knife
d. a wheelchair ramp
16. The gears used in many machines are a combination of more than one \qquad -.
a. lever
c. screw
b. pulley
d. wheel and axle
17. The IMA of any simple machine equals the \qquad .
a. amount of output force
c. product of distances moved
b. amount of work done
d. ratio of distances moved
18. When two or more simple machines are combined in such a way that \qquad the result is a compound machine.
a. all of the parts move at the same time
b. the resistance force of one machine becomes the effort force of the other machine
c. the simple machines all touch each other
d. the teeth of one simple machine fit in the teeth of another simple machine
19. The $M A$ of a compound machine is the \qquad of the MAs of the simple machines it contains.
a. difference
c. quotient
b. product
d. sum
20. How can the rider change the $M A$ of a multigear bicycle?
a. by choosing the path of the bicycle
c. by oiling the chain
b. by choosing the size of the gears
d. by pedaling faster
21. A person can ride a bicycle up a hill more easily if the \qquad .
a. gears are the same size
b. rear gear is larger than the front gear
c. rear gear is smaller than the front gear
d. rider rotates the pedals through fewer turns for each revolution of the wheel
\qquad
22. Which of the following items is not a part of a lever system in the human body?
a. bone
c. muscle contraction
b. moveable joint
d. nerve fibers
23. A lever system in the human body has \qquad efficiency and \qquad mechanical advantage.
a. high, high
c. low, high
b. high, low
d. low, low
24. A tall person has levers with less mechanical advantage than a short person because \qquad force is needed to move \qquad levers.
a. greater, longer
c. greater, shorter
b. less, longer
d. less, shorter
25. A pulley is used to lift a car engine. The engine is lifted 35.6 cm for every 1.07 m the rope is pulled. What is the IMA of the pulley?
a. 0.0300
b. 0.333
c. 3.00
d. 33.3

Answer the following questions. Show your calculations.
26. A student is removing rocks from a garden. She exerts a force of 218 N on a lever to raise one rock a distance of 11.0 cm .
a. If the rock weighs 1050 N , how far does the girl move her end of the lever if the lever is an ideal machine?
b. If the lever actually has an efficiency of 78.3 percent, how far does the girl move her end of the lever?

