## CHAPTER

## Chapter Outline

### 3.1 Distance and Direction

3.2 Speed and Velocity
3.3 Acceleration
3.4 References


A frog flicks out its long tongue to catch insects. In this photo, you can't actually see the frog's tongue moving. But even if you were to witness it in person, you still wouldn't be able to see it. That's because a frog's tongue moves incredibly fast. It travels out and back in about 0.15 seconds, too fast for the human eye to detect. Other organisms can also move at very high speeds. For example, the fastest land animal, the cheetah, can sprint at an amazing 120 kilometers ( 75 miles) per hour. Speed is one way of measuring motion. What is motion, and what are other ways of measuring it? In this chapter, you'll find out.

Opening image copyright Cathy Keifer, 2013. www.shutterstock.com. Used under license from Shutterstock.com.

### 3.1 Distance and Direction

## Lesson Objectives

- Define motion, and relate it to frame of reference.
- Describe how to measure distance.
- Explain how to represent direction.


## Lesson Vocabulary

- distance
- frame of reference
- motion
- vector


## Introduction

You can see several examples of people or things in motion in Figure 3.1. You can probably think of many other examples. You know from experience what motion is, so it may seem like a straightforward concept. Motion can also be defined simply, as a change in position. But if you think about examples of motion in more depth, you'll find that the idea of motion is not quite as simple and straightforward as it seems.

## Frame of Reference

Assume that a school bus, like the one in Figure 3.2, passes by as you stand on the sidewalk. It's obvious to you that the bus is moving. It is moving relative to you and the trees across the street. But what about to the children inside the bus? They aren't moving relative to each other. If they look only at the other children sitting near them, they will not appear to be moving. They may only be able to tell that the bus is moving by looking out the window and seeing you and the trees whizzing by.

This example shows that how we perceive motion depends on our frame of reference. Frame of reference refers to something that is not moving with respect to an observer that can be used to detect motion. For the children on the bus, if they use other children riding the bus as their frame of reference, they do not appear to be moving. But if they use objects outside the bus as their frame of reference, they can tell they are moving. What is your frame of reference if you are standing on the sidewalk and see the bus go by? How can you tell the bus is moving? The video at the URL below illustrates other examples of how frame of reference is related to motion.
http://www.youtube.com/watch?v=7FYBG5GSklU (6:45)


## FIGURE 3.1

These are just a few examples of people or things in motion. If you look around, you're likely to see many more.


## FIGURE 3.2

To a person outside the bus, the bus's motion is obvious. To children riding the bus, its motion may not be as obvious.


## MEDIA

Click image to the left for more content.

## Distance

Did you ever go to a track meet like the one pictured in Figure 3.3? Running events in track include 100-meter sprints and 2000 -meter races. Races are named for their distance. Distance is the length of the route between two points. The length of the route in a race is the distance between the starting and finishing lines. In a 100 -meter sprint, for example, the distance is 100 meters.


FIGURE 3.3
These students are running a 100-meter sprint.

## SI Unit for Distance

The SI unit for distance is the meter $(1 \mathrm{~m}=3.28 \mathrm{ft})$. Short distances may be measured in centimeters ( $1 \mathrm{~cm}=0.01$ $\mathrm{m})$. Long distances may be measured in kilometers $(1 \mathrm{~km}=1000 \mathrm{~m})$. For example, you might measure the distance a frog's tongue moves in centimeters and the distance a cheetah moves in kilometers.

## Using Maps to Measure Distance

Maps can often be used to measure distance. Look at the map in Figure 3.4. Find Mia's house and the school. You can use the map key to directly measure the distance between these two points. The distance is 2 kilometers. Measure it yourself to see if you agree.

## Direction

Things don't always move in straight lines like the route from Mia's house to the school. Sometimes they change direction as they move. For example, the route from Mia's house to the post office changes from west to north at the school (see Figure 3.4). To find the total distance of a route that changes direction, you must add up the distances traveled in each direction. From Mia's house to the school, for example, the distance is 2 kilometers. From the school to the post office, the distance is 1 kilometer. Therefore, the total distance from Mia's house to the post office is 3 kilometers.

## You Try It!



FIGURE 3.4
This map shows the routes from Mia's house to the school, post office, and park.

Problem: What is the distance from the post office to the park in Figure 3.4?
Direction is just as important as distance in describing motion. For example, if Mia told a friend how to reach the post office from her house, she couldn't just say, "go 3 kilometers." The friend might end up at the park instead of the post office. Mia would have to be more specific. She could say, "go west for 2 kilometers and then go north for 1 kilometer." When both distance and direction are considered, motion is a vector. A vector is a quantity that includes both size and direction. A vector is represented by an arrow. The length of the arrow represents distance. The way the arrow points shows direction. The red arrows in Figure 3.4 are vectors for Mia's route to the school and post office. If you want to learn more about vectors, watch the videos at these URLs:

- http://www.youtube.com/watch?v=B-iBbcFwFOk (5:27)



## MEDIA

Click image to the left for more content.

- http://www.youtube.com/watch?v=tSOz3xaHKLs\&feature=related


## You Try It!

Problem: Draw vectors to represent the route from the post office to the park in Figure 3.4.

## Lesson Summary

- Motion is a change of position. The perception of motion depends on a person's frame of reference.
- Distance is the length of the route between two points. The SI unit for distance is the meter (m).
- Direction is just as important as distance in describing motion. A vector is a quantity that has both size and direction. It can be used to represent the distance and direction of motion.


## Lesson Review Questions

## Recall

1. Define motion.
2. What is distance?
3. Describe how a vector represents distance and direction.

## Apply Concepts

4. In Figure 3.4, what is the distance from Mia's house to the park?
5. Draw vectors to represent the following route from point A to point B :
a. Starting at point A , go 2 km east.
b. Then go 1 km south.
c. Finally, go 3 km west to point B.

## Think Critically

6. Explain how frame of reference is related to motion.

## Points to Consider

A snail might travel 2 centimeters in a minute. A cheetah might travel 2 kilometers in the same amount of time. The distance something travels in a given amount of time is its speed.

- How could you calculate the speed of a snail or cheetah?
- Speed just takes distance and time into account. How might direction be considered as well?


### 3.2 Speed and Velocity

## Lesson Objectives

- Outline how to calculate the speed of a moving object.
- Explain how velocity differs from speed.


## Lesson Vocabulary

- speed
- velocity


## Introduction

Did you ever play fast-pitch softball? If you did, then you probably have some idea of how fast the pitcher throws the ball. For a female athlete, like the one in Figure 3.5, the ball may reach a speed of $120 \mathrm{~km} / \mathrm{h}$ (about $75 \mathrm{mi} / \mathrm{h}$ ). For a male athlete, the ball may travel even faster. The speed of the ball makes it hard to hit. If the ball changes course, the batter may not have time to adjust the swing to meet the ball.


## FIGURE 3.5

In fast-pitch softball, the pitcher uses a "windmill" motion to throw the ball. This is a different technique than other softball pitches. It explains why the ball travels so fast.

## Speed

Speed is an important aspect of motion. It is a measure of how fast or slow something moves. It depends on how far something travels and how long it takes to travel that far. Speed can be calculated using this general formula:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

A familiar example is the speed of a car. In the U.S., this is usually expressed in miles per hour (see Figure 3.6). If your family makes a car trip that covers 120 miles and takes 3 hours, then the car's speed is:

$$
\text { speed }=\frac{120 \mathrm{mi}}{3 \mathrm{~h}}=40 \mathrm{mi} / \mathrm{h}
$$

The speed of a car may also be expressed in kilometers per hour $(\mathrm{km} / \mathrm{h})$. The SI unit for speed is meters per second ( $\mathrm{m} / \mathrm{s}$ ).


## FIGURE 3.6

Speed limit signs like this one warn drivers to reduce their speed on dangerous roads.

## Instantaneous vs. Average Speed

When you travel by car, you usually don't move at a constant speed. Instead you go faster or slower depending on speed limits, traffic, traffic lights, and many other factors. For example, you might travel 65 miles per hour on a highway but only 20 miles per hour on a city street (see Figure 3.7). You might come to a complete stop at traffic lights, slow down as you turn corners, and speed up to pass other cars. The speed of a moving car or other object at a given instant is called its instantaneous speed. It may vary from moment to moment, so it is hard to calculate.
It's easier to calculate the average speed of a moving object than the instantaneous speed. The average speed is the total distance traveled divided by the total time it took to travel that distance. To calculate the average speed, you can use the general formula for speed that was given above. Suppose, for example, that you took a 75 -mile car trip with your family. Your instantaneous speed would vary throughout the trip. If the trip took a total of 1.5 hours, your average speed for the trip would be:


## FIGURE 3.7

Cars race by in a blur of motion on an open highway but crawl at a snail's pace when they hit city traffic.

$$
\text { average speed }=\frac{75 \mathrm{mi}}{1.5 \mathrm{~h}}=50 \mathrm{mi} / \mathrm{h}
$$

You can see a video about instantaneous and average speed and how to calculate them at this URL: http://www.y outube.com/watch?v=a8tIBrj84II (7:18).


## MEDIA

Click image to the left for more content.

## You Try It!

Problem: Terri rode her bike very slowly to the top of a big hill. Then she coasted back down the hill at a much faster speed. The distance from the bottom to the top of the hill is 3 kilometers. It took Terri 15 minutes to make the round trip. What was her average speed for the entire trip?

## Distance-Time Graphs

The motion of an object can be represented by a distance-time graph like the one in Figure 3.8. A distance-time graph shows how the distance from the starting point changes over time. The graph in Figure 3.8 represents a bike trip. The trip began at 7:30 $\mathrm{AM}(\mathrm{A})$ and ended at 12:30 PM (F). The rider traveled from the starting point to a destination and then returned to the starting point again.

## Slope Equals Speed

In a distance-time graph, the speed of the object is represented by the slope, or steepness, of the graph line. If the line is straight, like the line between A and B in Figure 3.8, then the speed is constant. The average speed can be calculated from the graph. The change in distance (represented by $\Delta \mathrm{d}$ ) divided by the change in time (represented by $\Delta \mathrm{t}$ :

$$
\text { speed }=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}
$$

For example, the speed between A and B in Figure 3.8 is:
$\mathrm{A} \longrightarrow \mathrm{B}(7: 30-8: 30)$ - The rider traveled 20 km from the starting point.
$B \longrightarrow C(8: 30-9: 00)$ - The rider stopped for half an hour, so her distance from the starting point did not change.
$C \longrightarrow D(9: 00-10: 00)$ - The rider traveled 25 kilometers and reached her destination.
$D \longrightarrow E(10: 00-11: 00)$ - The rider stayed at her destination for an hour, so her distance from the starting point did not change.
$\mathrm{E} \longrightarrow \mathrm{F}(11: 00-12: 00)$ - The rider returned to her starting point without stopping along the way.

FIGURE 3.8
This graph shows how far a bike rider is from her starting point at 7:30 AM until she returned at 12:30 PM.

$$
\text { speed }=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{20 \mathrm{~km}-0 \mathrm{~km}}{8: 30-7: 30 \mathrm{~h}}=\frac{20 \mathrm{~km}}{1 \mathrm{~h}}=20 \mathrm{~km} / \mathrm{h}
$$

If the graph line is horizontal, as it is between $B$ and $C$, then the slope and the speed are zero:

$$
\text { speed }=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{20 \mathrm{~km}-20 \mathrm{~km}}{9: 00-8: 30 \mathrm{~h}}=\frac{0 \mathrm{~km}}{0.5 \mathrm{~h}}=0 \mathrm{~km} / \mathrm{h}
$$

## You Try It!

Problem: In Figure 3.8, calculate the speed of the rider between C and D.

## Calculating Distance from Speed and Time

If you know the speed of a moving object, you can also calculate the distance it will travel in a given amount of time. To do so, you would use this version of the general speed formula:

$$
\text { distance }=\text { speed } \times \text { time }
$$

For example, if a car travels at a speed of $60 \mathrm{~km} / \mathrm{h}$ for 2 hours, then the distance traveled is:

$$
\text { distance }=60 \mathrm{~km} / \mathrm{h} \times 2 \mathrm{~h}=120 \mathrm{~km}
$$

## You Try It!

Problem: If Maria runs at a speed of $2 \mathrm{~m} / \mathrm{s}$, how far will she run in 60 seconds?

## Velocity

Speed tells you only how fast an object is moving. It doesn't tell you the direction the object is moving. The measure of both speed and direction is called velocity. Velocity is a vector that can be represented by an arrow. The length of the arrow represents speed, and the way the arrow points represents direction. The three arrows in Figure 3.9 represent the velocities of three different objects. Vectors A and B are the same length but point in different directions. They represent objects moving at the same speed but in different directions. Vector C is shorter than vector $A$ or $B$ but points in the same direction as vector $A$. It represents an object moving at a slower speed than $A$ or B but in the same direction as A. If you're still not sure of the difference between speed and velocity, watch the cartoon at this URL: http://www.youtube.com/watch?v=mDcaeO0WxBI\&feature=related (2:10).


## MEDIA

Click image to the left for more content.


FIGURE 3.9
These vectors show both the speed and direction of motion.

In general, if two objects are moving at the same speed and in the same direction, they have the same velocity. If two objects are moving at the same speed but in different directions (like A and B in Figure 3.9), they have different velocities. If two objects are moving in the same direction but at a different speed (like A and C in Figure 3.9), they have different velocities. A moving object that changes direction also has a different velocity, even if its speed does not change.

## Lesson Summary

- Speed is a measure of how fast or slow something moves. It depends on the distance traveled and how long it takes to travel that distance. The average speed of an object is calculated as the change in distance divided by the change in time.
- Velocity is a measure of both speed and direction. It is a vector that can be represented by an arrow. Velocity changes with a change in speed, a change in direction, or both.


## Lesson Review Questions

## Recall

1. What is speed? How is it calculated?
2. Define velocity.

## Apply Concepts

3. Sam ran a 2000-meter race. He started at 9:00 AM and finished at 9:05 AM. He started out fast but slowed down toward the end. Calculate Sam's average speed during the race.
4. Create a distance-time graph to represent a typical trip from your home to school or some other route you travel often. You may estimate distances and times.

## Think Critically

5. Explain how a distance-time graph represents speed.
6. Compare and contrast speed and velocity.
7. Is speed a vector? Why or why not?

## Points to Consider

In this chapter, you read that the speed of a moving object equals the distance traveled divided by the time it takes to travel that distance. Speed may vary from moment to moment as an object speeds up or slows down. In the next lesson, "Acceleration," you will learn how to measure changes in speed over time.

- Do you know what a change in speed or direction is called?
- Why might measuring changes in speed or direction be important?


### 3.3 Acceleration

## Lesson Objectives

- Define acceleration.
- Explain how to calculate acceleration.
- Describe velocity-time graphs.

Lesson Vocabulary

- acceleration


## Introduction

Imagine the thrill of riding on a roller coaster like the one in Figure 3.10. The coaster crawls to the top of the track and then flies down the other side. It also zooms around twists and turns at breakneck speeds. These changes in speed and direction are what make a roller coaster ride so exciting. Changes in speed or direction are called acceleration.


FIGURE 3.10
Did you ever ride on a roller coaster like this one? It's called the "Blue Streak" for a reason. As it speeds around the track, it looks like a streak of blue.

## Defining Acceleration

Acceleration is a measure of the change in velocity of a moving object. It shows how quickly velocity changes. Acceleration may reflect a change in speed, a change in direction, or both. Because acceleration includes both a size (speed) and direction, it is a vector.

People commonly think of acceleration as an increase in speed, but a decrease in speed is also acceleration. In this case, acceleration is negative. Negative acceleration may be called deceleration. A change in direction without a change in speed is acceleration as well. You can see several examples of acceleration in Figure 3.11.


## FIGURE 3.11

How is velocity changing in each of these pictures?

If you are accelerating, you may be able to feel the change in velocity. This is true whether you change your speed or your direction. Think about what it feels like to ride in a car. As the car speeds up, you feel as though you are being pressed against the seat. The opposite occurs when the car slows down, especially if the change in speed is sudden. You feel yourself thrust forward. If the car turns right, you feel as though you are being pushed to the left. With a left turn, you feel a push to the right. The next time you ride in a car, notice how it feels as the car accelerates in each of these ways. For an interactive simulation about acceleration, go to this URL: http://phet.colorado.edu/en/ simulation/moving-man .

## Calculating Acceleration

Calculating acceleration is complicated if both speed and direction are changing. It's easier to calculate acceleration when only speed is changing. To calculate acceleration without a change in direction, you just divide the change in velocity (represented by $\Delta \mathrm{v}$ ) by the change in time (represented by $\Delta \mathrm{t}$ ). The formula for acceleration in this case is:

$$
\text { Acceleration }=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}
$$

Consider this example. The cyclist in Figure 3.12 speeds up as he goes downhill on this straight trail. His velocity changes from 1 meter per second at the top of the hill to 6 meters per second at the bottom. If it takes 5 seconds for him to reach the bottom, what is his acceleration, on average, as he flies down the hill?

$$
\text { Acceleration }=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{6 \mathrm{~m} / \mathrm{s}-1 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=\frac{5 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=\frac{1 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~m}}=1 \mathrm{~m} / \mathrm{s}^{2}
$$

In words, this means that for each second the cyclist travels downhill, his velocity increases by 1 meter per second (on average). The answer to this problem is expressed in the SI unit for acceleration: $\mathrm{m} / \mathrm{s}^{2}$ ("meters per second squared").


FIGURE 3.12
Gravity helps this cyclist increase his downhill velocity.

## You Try It!

Problem: Tranh slowed his skateboard as he approached the street. He went from $8 \mathrm{~m} / \mathrm{s}$ to $2 \mathrm{~m} / \mathrm{s}$ in a period of 3 seconds. What was his acceleration?

## Velocity-Time Graphs

The acceleration of an object can be represented by a velocity-time graph like the one in Figure 3.13. A velocitytime graph shows how velocity changes over time. It is similar to a distance-time graph except the $y$-axis represents
velocity instead of distance. The graph in Figure 3.13 represents the velocity of a sprinter on a straight track. The runner speeds up for the first 4 seconds of the race, then runs at a constant velocity for the next 3 seconds, and finally slows to a stop during the last 3 seconds of the race.


FIGURE 3.13
This graph shows how the velocity of a runner changes during a 10 -second sprint.

In a velocity-time graph, acceleration is represented by the slope of the graph line. If the line slopes upward, like the line between A and B in Figure 3.13, velocity is increasing, so acceleration is positive. If the line is horizontal, as it is between $B$ and $C$, velocity is not changing, so acceleration is zero. If the line slopes downward, like the line between C and D , velocity is decreasing, so acceleration is negative. You can review the concept of acceleration as well as other chapter concepts by watching the musical video at this URL: http://www.youtube.com/watch?v=4 CWINoNpXCc .

## Lesson Summary

- Acceleration is a measure of the change in velocity of a moving object. It shows how quickly velocity changes and whether the change is positive or negative. It may reflect a change in speed, a change in direction, or both.
- To calculate acceleration without a change in direction, divide the change in velocity by the change in time.
- The slope of a velocity-time graph represents acceleration.


## Lesson Review Questions

## Recall

1. What is acceleration?
2. How is acceleration calculated?
3. What does the slope of a velocity-time graph represent?

## Apply Concepts

4. The velocity of a car on a straight road changes from $0 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is its acceleration?

## Think Critically

5. Because of the pull of gravity, a falling object accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Create a velocity-time graph to represent this motion.

## Points to Consider

Acceleration occurs when a force is applied to a moving object.

- What is force? What are some examples of forces?
- What forces might change the velocity of a moving object? (Hint: Read the caption to Figure 3.12.)


### 3.4 References

1. Train: John H. Gray; Cyclist: Flickr:DieselDemon; Inchworm: Clinton Charles Robertson; Hummingbird: Kevin Cole; Cartwheeler: Clemens v. Vogelsang (Flickr:vauvau); Meteor: Ed Sweeney (Flickr:Navicore). Train: http://www.flickr.com/photos/8391775@N05/3494460809/; Cyclist: http://www.flickr.com/photos/2 8096801@N05/3530472429/; Inchworm: http://www.flickr.com/photos/dad_and_clint/3571033947/; Hummi ngbird: http://www.flickr.com/photos/kevcole/2840250013/; Cartwheeler: http://www.flickr.com/photos/vauv au/8057026163/; Meteor: http://www.flickr.com/photos/edsweeney/4111291263/ . CC BY 2.0
2. Bus: Flickr:torbakhopper; Children: Flickr:woodleywonderworks. Bus: http://www.flickr.com/photos/gazero nly/6904946218/; Children: http://www.flickr.com/photos/wwworks/2970993575/ . CC BY 2.0
3. Flickr:Blrframes. http://commons.wikimedia.org/wiki/File:Boys_track_and_field_in_Bangalore_India.jpg . CC BY 2.0
4. Christopher Auyeung (CK-12 Foundation); Compass: Seamus McGill. Compass: http://commons.wikimedi a.org/wiki/File:Compass_rose_browns_00.png . CC BY-NC 3.0; Compass: Public Domain
5. Stuart Seeger. http://commons.wikimedia.org/wiki/File:Pitching_3.jpg . CC BY 2.0
6. User:Overpush/Wikimedia Commons. http://commons.wikimedia.org/wiki/File:MDSHA_W13-3.svg . Public Domain
7. Left: Flickr:äquinoktium; Right: Mario Roberto Duran Ortiz (Wikimedia: Mariordo). Left: http://www .flickr.com/photos/44080248@N03/4053247185/; Right: http://commons.wikimedia.org/wiki/File:Traffic_C ongestion_Brasilia.jpg . Left: CC BY 2.0; Right: CC BY 3.0
8. Christopher Auyeung. CK-12 Foundation . CC BY-NC 3.0
9. Christopher Auyeung (CK-12 Foundation); Compass: Seamus McGill. Compass: http://commons.wikimedi a.org/wiki/File:Compass_rose_browns_00.png . CC BY-NC 3.0; Compass: Public Domain
10. Flickr:daveynin. http://www.flickr.com/photos/daveynin/7578666866/ . CC BY 2.0
11. Carousel: Jef Fisher; Skydiver: User:Degrer/Wikimedia Commons; Runner: Mike Spille; Basketball: Maurice Dayao/U.S. Navy; Model rocket: Flickr:kansasphoto; Baseball: Flickr:MyBiggestFan. Carousel: http://www .flickr.com/photos/jeffisher/4839746434/; Skydiver: http://commons.wikimedia.org/wiki/File:SkydiveroverE slovSweden.jpg; Runner: http://commons.wikimedia.org/wiki/File:NOLA_Marathon_2010_Crossing_Finis h_Line.jpg; Basketball: http://commons.wikimedia.org/wiki/File:US_Navy_080616-N-3581D-208_Ensign_Ian_Hochstein,_assigned_to_the_frigate_USS_Ford_(FFG_54),_teaches_a_young_girl_to_spin_a_basketball _at_the_Ban_Kao_Chan_Primary_School_in_Sattahip.jpg; Model rocket: http://www.flickr.com/photos/3402 2876@N06/3509029796/; Baseball: http://www.flickr.com/photos/msciba/210081711/ . Carousel: CC BY 2.0; Skydiver: Public Domain; Runner: CC BY 2.0; Basketball: Public Domain; Model rocket: CC BY 2.0; Baseball: CC BY 2.0
12. Neil Cain. http://www.flickr.com/photos/pimpmasterjazz/2601898276/ . CC BY 2.0
13. Christopher Auyeung. CK-12 Foundation. CC BY-NC 3.0
