

What is Physics?

- the study of the physical world

- matter, energy, and how they are related

What is the goal of Physics?

 use a small number of basic concepts, equations, and assumptions to describe the physical world

- basically, to explain everything and be able to make accurate predictions

Name	Subjects	Examples
Mechanics	motion and its causes, interactions between objects	falling objects, friction weight, spinning objects
Thermodynamics	heat and temperature	melting and freezing processes, engines, refrigerators
Vibrations and wave phenomena	specific types of repetitive motions	springs, pendulums, sound
Optics	light	mirrors, lenses, color, astronomy
Electromagnetism	electricity, magnetism, and light	electrical charge, cir- cuitry, permanent mag- nets, electromagnets
Relativity	particles moving at any speed, including very high speeds	particle collisions, particle accelerators, nuclear energy
Quantum mechanics	behavior of submicro- scopic particles	the atom and its parts

1.	1, 1.2 Physics,	Mathematics,	and Measurement		
	$v_f = v_i + a \Delta t$	$\triangle d = v_i \triangle t + \frac{1}{2} \alpha \triangle t^2$	$v_f^2 = v_i^2 + 2a\Delta d$	F = ma	$F_w = mg$
	$F = G \frac{m_1 m_2}{d^2}$	$\mu = \frac{F_F}{F_N}$	$\alpha_{\varepsilon} = \frac{\nu^2}{r}$	$F_c = \frac{mv^2}{r}$	$\nu = \frac{2\Pi r}{T}$
	$F_c = T + mg$	$F_c = T - mg$	$v = \sqrt{r\mu g}$	$v = \sqrt{rg}$	$W = F(\cos \Theta)d$
	$W_{net} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$	PE _{grav} = mgh	$\frac{1}{2}m{v_i}^2 + mgh_i = \frac{1}{2}m{v_f}^2 + mgh_f$	$P = \frac{W}{t}$	P = F v
	$KE = \frac{1}{2}mv^2$	$F \triangle t = m v_f - m v_i$	$m_1 v_{i1} + m_2 v_{i2} = m_1 v_{f1} + m_2 v_{f2}$	F = -kx	$PE_{sp} = \frac{1}{2}kx^2$
	$f = \frac{1}{T}$	$T = \frac{1}{f}$	$T = 2\Pi \sqrt{\frac{l}{g}}$	$T = 2 \prod \sqrt{\frac{m}{k}}$	$v = f\lambda$

- In Physics, equations are important tools for modeling observations and making predictions

SIL	Inits (Le Systeme Internationale d'Unites)
	 Physics involves the measurement of a variety of quantities
	- SI System consists of 7 base units

1.1, 1.2 Physics, Mathematics, and Measurement

- SI Units (Le Systeme Internationale d'Unites)
 - Physics involves the measurement of a variety of quantities
 - SI System consists of 7 base units

1.1, 1.2 Physics, Mathematics, and Measurement

Originally, the meter was defined as one ten-millionth of the length of the earth's meridian extending from the north pole, through Paris, to the equator.

In 1927, the meter was more precisely defined as the distance, at 0°, between the axes of the two central lines marked on the bar of platinum-iridium kept at the BIPM. This bar being subject to standard atmospheric pressure and supported on two cylinders of at least one centimeter diameter, symmetrically placed in the same horizontal plane at a distance of 571 mm from each other.

1.1, 1.2 Physics, Mathematics, and Measurement

In 1983 the CGPM replaced this latter definition by the following definition:

The meter is the length of the path traveled by light in a vacuum during a time interval of 1 / 299 792 458 of a second

1.1, 1.2 Physics, Mathematics, and Measurement

SI Units (Le Systeme Internationale d'Unites)

- Physics involves the measurement of a variety of quantities
- SI System consists of 7 base units

1.1, 1.2 Physics, Mathematics, and Measurement

At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. In 1889, the 1st CGPM sanctioned the international prototype of the kilogram, made of platinum-iridium.

The 3rd CGPM (1901), in a declaration intended to end the ambiguity in popular usage concerning the word "weight," confirmed that:

> The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

SI Units (Le Systeme Internationale d'Unites)

- Physics involves the measurement of a variety of quantities
- SI System consists of 7 base units

Base Quantity	Base Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature		
Amount of Substance		
Electric Current		
Luminous Intensity		

1.1, 1.2 Physics, Mathematics, and Measurement

The unit of time, the second, was defined originally as the fraction 1 / 86 400 of the mean solar day.

1.1, 1.2 Physics, Mathematics, and Measurement

Considering that a very precise definition of the unit of time is indispensable for the International System, the 13th CGPM (1967) decided to replace the definition of the second by the following:

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two levels of the ground state of the cesium 133 atom.

1.1, 1.2 Physics, Mathematics, and Measurement					
SI Units (Le Systeme Internationale d'Unites)					
 Physics involves t quantities 	- Physics involves the measurement of a variety of quantities				
- SI System consist	s of 7 base units				
Base Quantity	Base Uhit	Symbol			
Length	meter	m			
Mass	kilogram	kg			
Time	second	S			
Temperature	kelvin	к			
Amount of Substance	mole	mol			
Electric Current	ampere	A			
Luminous Intensity	candela	cd			

- 1 x 10¹⁷ m or 1 x 10⁻⁹ m

Scientific Notation

- a distance is 120,000,000 m
- 1. Place the decimal such that there is one non-zero digit to the left of the decimal point:

1.2000000 m

2. Count the number of decimal places the decimal has been moved from the original number :

moved 8 (This becomes the power of 10)

3. If the original number is greater than 1, the exponent is positive. If the original number is less than 1, the exponent is negative :

1.2 x 10⁸ m

1.1, 1.2 Physics, Mathematics, and Measurement Scientific Notation

- a distance is .000789 m
- 1. Place the decimal such that there is one non-zero digit to the left of the decimal point:

0007.89 m

2. Count the number of decimal places the decimal has been moved from the original number :

moved 4 This becomes the power of 10

3. If the original number is greater than 1, the exponent is positive. If the original number is less than 1, the exponent is negative :

7.89 x 10⁻⁴ m

1.1, 1.2 Physics,	Mathematics, and Measurement
Convert from	standard notation to scientific notation
	.00030 m
	23,408 km
	.00058 g
	113 h
	0.003005 g
	23,000 kg
	9,570,100 s
	.004004 m

Convert from standard nota	ttion to scientific notation	
.00030 m	3.0 x 10⁻⁴ m	
23,408 km	2.3408 x 10 ⁴ km	
.00058 g	5.8 x 10 ⁻⁴ g	
113 h	1.13 x 10 ² h	
0.003005 g	3.005 x 10 ⁻³ g	
23,000 kg	2.3 x 10 ⁴ kg	
9,570,100 s	9.5701 x 10 ⁶ s	
.004004 m	4.004 x 10 ⁻³ m	

nvert from scientific notation to standard notation	Convert from standard notation to scientific notation		
4.56 x 10 ⁻⁶ m	.00030 m 3.0 x 10 ⁻⁴ m		
1.58 x 10 ³ km	23,408 km 2.3408 x 10 ⁴ km		
4.395 x 10 ⁵ a	.00058 g 5.8 x 10 ⁻⁴ g		
$25 \times 10^{-3} h$	113 h 1.13 x 10 ² h		
5.8 x 10 ⁻⁴ a	0.003005 g 3.005 x 10 ⁻³ g		
$1.28 \times 10^{-2} \text{ kg}$	23,000 kg 2.3 × 10 ⁴ kg		
9 57 x 10 ⁴ s	9,570,100 s 9.5701 x 10 ⁶ s		
$1.06 \times 10^{-5} \text{ m}$.004004 m 4.004 x 10 ⁻³ m		

.1, 1.2 Physics, Mathematics, and Measurement						
SI uses prefixes to accommodate extremes - combine prefixes with units that symbolize certain powers of 10						
Po	wer	Prefix	Abbreviation	Power	Prefix	Abbreviation
10	-18	atto-	a	10 ⁻¹	deci-	d
10	-15	femto-	f	10 ¹	deka-	da
10	-12	pico-	Р	10 ³	kilo-	k
10	-9	nano-	n	10 ⁶	mega-	М
10	-6	micro-	μ (Greek	10 ⁹	giga-	G
	2		letter <i>mu</i>)	10 ¹²	tera-	т
10	-5	milli-	m	10 ¹⁵	peta-	Р
10	-2	centi-	с	10 ¹⁸	exa-	E

Examples

- The mass of an average woman is 60,000,000 mg. Express this in grams and kilograms.

- A human hair is approximately 50 µm. Express this diameter in meters (using scientific notation).

- The mass of a proton is 1.67×10^{-12} pg. Express this in g, mg, and kg (using scientific notation).

1.1, 1.2 Physics, Mathematics, and Measurement

Examples

- The mass of an average woman is 60,000,000 mg. Express this in grams and kilograms.

Ans: 60,000 g and 60 kg

- A human hair is approximately 50 µm. Express this diameter in meters (using scientific notation).

Ans: 5 x 10⁻⁵ m

- The mass of a proton is 1.67×10^{-12} pg. Express this in g, mg, and kg (using scientific notation).

Ans: 1.67 x 10⁻²⁴g; 1.67 x 10⁻²¹mg; 1.67 x 10⁻²⁷ kg

1.1, 1.2 Physics, Mathematics, and Measurement

Accuracy and Precision

Measurement – A comparison between an unknown quantity and a standard

- Must make a measurement in the correct units (e.g. – measure length use meters, NOT kilograms!!)

Accuracy – how well the results of a measurement agree with the accepted value.

- No measurement is perfect due to various sources of error

Sources of Error

1. Human error

1.1, 1.2 Physics, Mathematics, and Measurement

Accuracy – how well the results of a measurement agree with the accepted value.

- No measurement is perfect due to various sources of error

Sources of Error

- 1. Human error
- 2. Method error

Parallax – the apparent shift in the position of an object when viewed from different angles.

3. Instrument error

Significant Figures – those digits in a measurement that are known with certainty plus the first digit that is uncertain (estimated).

Significant figures are significant because they <u>SIGNIFY</u> something!!!!

- Significant figures are an indicator of precision

- Our pencil measure 18.2 cm

-How many significant figures (sig figs) are there?

-How many digits are known with certainty?

-How many estimated digits are there?

Significant Figures – those digits in a measurement that are known with certainty plus the first digit that is uncertain (estimated).

Significant figures are significant because they <u>SIGNIFY</u> something!!!!

- Significant figures are an indicator of precision

- Our pencil measure 18.2 cm

-How many significant figures (sig figs) are there? 3

-How many digits are known with certainty? 2

-How many estimated digits are there?

1.3 Graphing Data

- A variable is any factor that might affect the behavior of an experimental setup

- The independent variable is the factor that is changed or manipulated during the experiment.

- The dependent variable is the factor that depends on the independent variable.

1.3 Graphing Data

Linear Relationships

When the line of best fit is a straight line, as in the figure, the dependent variable varies linearly with the independent variable. This relationship between the two variables is called a linear relationship.

The relationship can be written as an equation:

y = mx + b

1.3 Graphing Data

Linear Relationships

The slope is the ratio of the vertical change to the horizontal change. To find the slope, select two points, A and B, far apart on the line. The vertical change, or rise, Δy , is the difference between the vertical values of A and B. The horizontal change, or run, Δx , is the difference between the horizontal values of A and B.

Slope $m = \frac{rise}{run} = \frac{\Delta y}{\Delta x}$

