Physics \leftrightarrow Math Worksheet - Algebra and Substitution

Solve the following equations for the variable indicated. There should be enough room to do one step at a time.

1. $v=\frac{x}{t}$ (for $\left.t\right)$
2. $\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2} \quad(f o r k)$
3. $m g h=\frac{1}{2} m v^{2}$ (for v)
4. $\frac{m_{1} v^{2}}{r}=m_{2} g h(f o r r) \quad$ 5. $T=2 \pi \sqrt{\frac{L}{g}}$ (forg) \quad 6. $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{f}+m_{2} v_{f}$ (for $\left.v_{f}\right)$
5. $x=v_{i} t+\frac{1}{2} a t^{2} \quad$ (for $\left.a\right) \quad$ 8. $\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{R_{\text {eq }}}\left(\right.$ for $\left.R_{2}\right) \quad$ 9. $m_{1}(x)=m_{2}(3-x) \quad($ for $x)$

Evaluate the following using the information given. Try algebraically solving for the unknown variable first.

1. $v_{f}=v_{i}+a t$ (find a, if $\left.v_{i}=2, v_{f}=16, t=2\right)$
2. $F=\frac{m v^{2}}{r}$ (find r, if $F=10, m=5, v=4$)
3. $T=2 \pi \sqrt{\frac{m}{k}} \quad$ (find m, if $T=3, k=50$)
4. $\frac{P_{1}{ }^{2}}{d_{1}{ }^{3}}=\frac{P_{2}{ }^{2}}{d_{2}{ }^{3}}$ (find d_{2}, if $P_{1}=10, P_{2}=8, d_{l}=2$)
5. $\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \quad\left(\right.$ find d_{o}, if $\left.d_{i}=20, f=12\right)$
6. $x=v_{i} t+\frac{1}{2} a t^{2} \quad\left(\right.$ find t, if $\left.v_{i}=0, x=125, a=10\right)$

Solve the following word problems using the information and steps (I, II, III) provided.
7. If an airplane travels at $120 \mathrm{~m} / \mathrm{s}$ (v), how long would it take (t) for the plane to travel a distance (x) of 300 meters?
$\begin{array}{ll}\text { (I) List givens: } & \text { Concept Equation: } \quad v=\frac{x}{t} \\ v= & \text { (II) Derive Equation (solve for } t \text {) } \\ x= & \\ t=? & \\ \\ \text { (III) Substitute the given values into your derived } \\ \text { equation for time and evaluate. }\end{array}$

$$
\begin{gathered}
v= \\
x= \\
t=?
\end{gathered}
$$

8. A toy car accelerates from an initial velocity (v_{i}) of $5 \mathrm{~m} / \mathrm{s}$, to a final velocity $\left(v_{f}\right)$ of $17 \mathrm{~m} / \mathrm{s}$, in 6 seconds. Find the acceleration of the car?
(I) List Givens: Concept Equation: $v_{f}=v_{i}+a t$

$$
\begin{aligned}
v_{i} & =\quad \text { (II) Derive Equation (solve for } a) \\
v_{f} & = \\
t & = \\
a & =?
\end{aligned}
$$

(III) Substitute the given values into your derived equation for acceleration and evaluate.

