Chapter 4: Linear Functions

Functions

$>$ Domain
$>$ Range
> Function - yes or no?
$>$ Write the rule for the function

Coordinate Plane

> x -axis and y -axis
$>$ quadrants
$>$ origin
$>$ plot points

Slope

$>$ formula: slope $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}=\frac{\text { rise }}{\text { run }}$
$>$ find the slope between two points
$>$ find x or y given a point and the slope
$>$ the slope of a horizontal line is zero
$>$ the slope of a vertical line is undefined (no slope)
$>$ a line with a positive slope rises to the right
$>$ a line with a negative slope falls to the right
$>$ two lines with equal slopes are parallel
$>$ two lines are perpendicular if their slopes are negative reciprocals

Graphing lines

> use an x / y chart to graph a line
$>$ use slope-intercept form to graph a line
$>$ the graph of an equation in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is a diagonal line
$>$ the graph of an equation in $\mathrm{y}=$ \# is a horizontal line
$>$ the graph of an equation in $x=\#$ is a vertical line

Intercepts

$>$ to find an x -intercept, let $\mathrm{y}=0 \quad(\mathrm{x}, 0)$
$>$ to find a y -intercept, let $\mathrm{x}=0 \quad(0, \mathrm{y})$
$>$ graph a line using the intercepts

Function notation

$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$
$>$ Given one or more functions, find the following:

- $f(3)$ substitute the number into the function for $x \quad(3, y)$
- x when $f(x)=3$ set the function equal to the number ($x, 3$)
- when $f(x)=g(x)$ set the two functions equal, solve for x, plug back into either function to solve for $\mathrm{y} \quad(\mathrm{x}, \mathrm{y})$ represents the point of intersection

