# Chemical Quantities 

Chapter 10

## The Mole: A Measurement of Matter

22 Section 10.1

## 104 10.1 The Mole: A Measurement of Matter

## Connecting to Your World Every year, contestants from

all over the world travel to Harrison Hot Springs in British Columbia, Canada, to compete in the world championship sand sculpture contest.

ach contestant creates a beautiful work of art out of millions of tiny grains of sand. You could measure the amount of sand in a sculpture by counting the grains of sand. But wouldn't it be much easier to weigh the sand? In this section, you'll discover how chemists measure the amount of a substance using a unit called a mole.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights resenved.

### 10.1 The Mole: A Measurement of Matter

Measuring Matter

- Often measure the amount of matter by 1 of 3 ways:
- Count
- Mass
- Volume
- We can create conversion factors
- 1 gallon of gas $=\$ 3.00$ or
- \$3.00/gallon (Think of "/" as "per" or divided by)
- How much gas can I buy for \$15?


## Finding Mass from a Count

What is the mass of 90 average-sized apples if 1 dozen of the apples has a mass of 2.0 kg ?

Analyze List the knowns and the unknown.

2 Calculate Solve for the unknown.

3 Evaluate Does the result make sense?

### 10.1 The Mole: A Measurement of

 MatterWhat is a mole?

- Avogadro's number-
- $6.02 \times 10^{23}$,
- =number of "representative particles" in a mole.
- Representative particles-
- refers to the species present in a substance: usually
- atoms,
- molecules, or
- formula units.


### 10.1 The Mole: A Measurement of Matter

- Mole (mol)-
- $6.02 \times 10^{23}=$ "representative particles" of that substance
- the SI unit for measuring the amount of a substance.


### 10.1 The Mole: A Measurement of Matter

## Table 10.1

Representative Particles and Moles

| Substance | Representative <br> particle | Chemical <br> formula | Representative <br> particles in <br> $\mathbf{1 . 0 0 ~ m o l e ~}$ |
| :--- | :--- | :--- | :--- |
| Atomic nitrogen | Atom | N | $6.02 \times 10^{23}$ |
| Nitrogen gas | Molecule | $\mathrm{N}_{2}$ | $6.02 \times 10^{23}$ |
| Water | Molecule | $\mathrm{H}_{2} \mathrm{O}$ | $6.02 \times 10^{23}$ |
| Calcium ion | Ion | $\mathrm{Ca}^{2+}$ | $6.02 \times 10^{23}$ |
| Calcium fluoride | Formula unit | $\mathrm{CaF}_{2}$ | $6.02 \times 10^{23}$ |
| Sucrose | Molecule | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ | $6.02 \times 10^{23}$ |

### 10.1 The Mole: A Measurement of Matter

- Converting Number of Particles to Moles moles $=$ representative particles $\times \frac{1 \text { mole }}{6.02 \times 10^{23} \text { representative particles }}$



### 10.1 The Mole: A Measurement of Matter

- Converting Moles to Number of Particles
representative particles $=$ moles $\times \frac{6.02 \times 10^{23} \text { representative particles }}{1 \text { mole }}$


## SAMPLE PROBLEM 10.3

## Converting Moles to Number of Atoms

Propane is a gas used for cooking and heating. How many atoms are in 2.12 mol of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ ?

1 Analyze List the knowns and the unknown.

2 Calculate Solve for the unknown.


### 10.1 The Mole: A Measurement of Matter

The Mass of a Mole of an Element

- The Atomic mass of an element (expressed in grams) is the mass of a mole of the element.

Molar mass-

- term used to refer to the mass of a mole of any substance.
- Example:
- 1 mol of $\mathrm{Hg}=200.6 \mathrm{~g}$
- 1 mol of $\mathrm{C}=12.0 \mathrm{~g}$
- 1 mole = atomic mass of an element or compound


Table 10.2

| CARBON ATOMS | HYDROGEN ATOMS | MASS RATIO |
| :---: | :---: | :---: |
| Number Mass (amu) | Number Mass (amu) | $\frac{\text { Mass carbon }}{\text { Mass hydrogen }}$ |
| $\bigcirc 12$ | - 1 | $\frac{12 \mathrm{amu}}{1 \mathrm{amu}}=\frac{12}{1}$ |
| $\begin{gathered} 24 \\ {[2 \times 12]} \end{gathered}$ | $\stackrel{2}{[2 \times 1]}$ | $\frac{24 \mathrm{amu}}{2 \mathrm{amu}}=\frac{12}{1}$ |
| $\begin{gathered} 120 \\ {[10 \times 12]} \end{gathered}$ | $\begin{array}{lc} 00000 & 10 \\ 00000 & {[10 \times 1]} \end{array}$ | $\frac{120 \mathrm{amu}}{10 \mathrm{amu}}=\frac{12}{1}$ |
|  | 0000000000 <br> 0000000000 <br> -999999099 <br> 0000009000 $0009000000$ $\begin{gathered} 50 \\ {[50 \times 1]} \end{gathered}$ | $\frac{600 \mathrm{amu}}{50 \mathrm{amu}}=\frac{12}{1}$ |
| $\begin{gathered}\text { Avogadro's } \\ \text { number }\end{gathered} \quad\left(6.02 \times 10^{23}\right) \times(12)$ | $\begin{gathered} \text { Avogadro's } \\ \text { number } \end{gathered}\left(6.02 \times 10^{23}\right) \times(1)$ | $\frac{\left(6.02 \times 10^{23}\right) \times(12)}{\left(6.02 \times 10^{23}\right) \times(1)}=\frac{12}{1}$ |

### 10.1 The Mole: A Measurement of Matter

Mass of a mole of a Compound

- To calculate the molar mass of a compound-
- find the number of grams of each element in one mole of the compound,
- add the masses of the elements in the compound.
- Example
- Molar mass of $\mathrm{H}_{2} \mathrm{O}$ :
- Atm. Mass $\mathrm{H}=1 \mathrm{~g}(\mathrm{x} 2)=2 \mathrm{~g}$
- Atm. Mass $\mathrm{O} \quad=\underline{16 \mathrm{~g}}$
- Molar mass $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$


### 10.1 The Mole: A Measurement of Matter




# Mole to mass and mole to volume ratios 

22 Section 10.2

# 108 10.2 Mole-Mass and Mole-Volume Relationships 

## Connecting to Your World

Guess how manyjelly beans are
in the container and win a prize! You decide to enter the contest and you win. Was it just a lucky guess? Not exactly. You estimated the length and
 meter of jelly bean to find its approximate
volume. Then you estimated the dimensions of the container to obtain its volume. You did the arithmetic and made your guess. In a similar way, chemists use the relationships
between the mole and quantities such as
mass, volume, and number of particles to solve chemistry problems. In this section you will find out how the mole and mass are related.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights resenved.

# 10.2 Mole-Mass and MoleVolume Relationship 

Mole to mass relationships

- Use the molar mass of an element or compound to convert between the mass of a substance and the moles of a substance.
- Moles to mass conversion
mass (grams) $=$ number of moles $\times \frac{\text { mass (grams) }}{1 \text { mole }}$


## SAMPLE PROBLEM 10.5

## Converting Moles to Mass

The aluminum satellite dishes in Figure 10.8 are resistant to corrosion because the aluminum reacts with oxygen in the air to form a coating of aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. This tough, resistant coating prevents any further corrosion. What is the mass of 9.45 mol of aluminum oxide?

1 Analyze List the known and the unknown.


3 Evaluate Does the result make sense?

### 10.2 Mole-Mass and MoleVolume Relationship <br> , Mass to moles conversion:

$$
\text { moles }=\text { mass }(\text { grams }) \times \frac{1 \text { mole }}{\text { mass }(\text { grams })}
$$



### 10.2 Mole-Mass and MoleVolume Relationship

# 10.2 Mole-Mass and MoleVolume Relationship 

The Mole-Volume Relationship

- Avogadro's hypothesis-
- states that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.
- Standard temperature and pressure (STP)-
- means a temperature of $0^{\circ} \mathrm{C}$ and,
- a pressure of 101.3 kPa , or 1 atmosphere (atm)
- kPa = kilopascal
- At STP,
- 1 mol or $6.02 \times 10^{23}$ representative particles, of any gas occupies a volume of 22.4 Liters
- Molar volume-
- the quantity 22.4 L of a gas.


# 10.2 Mole-Mass and MoleVolume Relationship 

- 22.4L applies only at STP


Figure 10.10 The volume of a gas varies with temperature and pressure. (a) The volume of the gas in the balloon on the left is larger because its temperature is higher. (b) The air in the "empty" water bottle on the left has a larger volume because it is at a lower pressure.

- If we change Temperature or pressure, volume will change


### 10.2 Mole-Mass and MoleVolume Relationship <br> Calculating Volume at STP

$$
\square=\text { moles of gas } \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}
$$

## SAMPLE PROBLEM 10.7

## Calculating the Volume of a Gas at STP

Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is a gas produced by burning coal. It is an air pollutant and one of the causes of acid rain. Determine the volume, in liters, of $0.60 \mathrm{~mol} \mathrm{SO}_{2}$ gas at STP.

1 Analyze List the knowns and the unknown.

2 Calculate Solve for the unknown.

3 Evaluate Does the result make sense?

### 10.2 Mole-Mass and Mole-

 Volume RelationshipCalculating Molar Mass from Density

- Mass units
- Grams (g)
- Molar mass units
- g/mole
- Density units
- Mass/volume, usually
- g/L
- Density tell us if a substance will float or sink in another substance
- Applies to solids, liquids \& gases


### 10.2 Mole-Mass and MoleVolume Relationship

- molar mass $=$ density at STP $\times$ molar volume at STP

$$
=\frac{\text { grams }}{L} \times \frac{22.4 L}{1 \mathrm{~mole}}
$$

## Calculating the Molar Mass of a Gas at STP

The density of a gaseous compound containing carbon and oxygen is found to be $1.964 \mathrm{~g} / \mathrm{L}$ at STP. What is the molar mass of the compound?

## 1 Analyze List the knowns and the unknown.

(2) Calculate Solve for the unknown.

# 10.2 Mole-Mass and MoleVolume Relationship <br> - The Mole Road Map (p. 303) 



# Percent Composition and Chemical Formulas 

22 Section 10.3

## 110 10.3 Percent Composition and Chemical Formulas

## Connecting to Your World

Is your shir tmade of 100
percent cotton or wool, or is the fabric a combination of two or more fibers? A tag sewed into the seam of the shirt usually tells you what fibers

were used to make the cloth and the percent of each. It helps to know the percents of the components in the shirt because they affect how warm it is, whether it will need to be ironed, and how it should be cleaned. In this section you will learn how the percents of the elements in a compound are important in
chemistry.

## 10. 3 Percent Composition and Chemical Formulas

## Percent composition-

the percent by mass of each element in a compound.

- Equal to mass (in g) of an element divided by,
- The mass (in g) of the compound x100\%

$$
\frac{\text { "part" }}{\text { 'WHOLE' }}
$$

$\%$ mass of element $=\frac{\text { mass of element }}{\text { mass of compound }} \times 100 \%$

## 10. 3 Percent Composition and Chemical Formulas



## SAMPLE PROBLEM 10.9

## Calculating Percent Composition from Mass Data

When a $13.60-\mathrm{g}$ sample of a compound containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of this compound?

1 Analyze List the knowns and the unknowns.

2 Calculate Solve for the unknown.

## 3 Evaluate Does the result make sense?

# 10. 3 Percent Composition and Chemical Formulas 

Percent Composition from the Chemical Formula

$\%$ mass $=\frac{\text { mass of element in } 1 \text { mol compound }}{\text { molar mass of compound }} \times 100 \%$

## Calculating the Percent Composition from a Formula

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, the fuel commonly used in gas grills, is one of the lighter compounds obtained from petroleum. Calculate the percent composition of propane.

1 Analyze List the knowns and the unknowns.

2 Calculate Solve for the unknowns.

3 Evaluate Does the result make sense?

## 10. 3 Percent Composition and Chemical Formulas

Percent Composition as a Conversion factor

- If $\mathrm{C}_{3} \mathrm{H}_{8}$ is
- $81.8 \%$ C
- $18 \%$ H
- How many g of C and H would be present in an 82 g sample of $\mathrm{C}_{3} \mathrm{H}_{8}$ ?


## 10. 3 Percent Composition and Chemical Formulas

- Empirical formula-
- gives the lowest whole number ratio of the atoms of the elements in a compound.
- Ex:
- $\mathrm{Mg}_{2} \mathrm{~S}_{2} \rightarrow \mathrm{MgS}$
- $\mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$


## SAMPLE PROBLEM 10.11

Determining the Empirical Formula of a Compound
A compound is analyzed and found to contain $25.9 \%$ nitrogen and $74.1 \%$ oxygen. What is the empirical formula of the compound?


## 10. 3 Percent Composition and Chemical Formulas

- Molecular Formula-
- simple whole number multiple of its empirical formula.
- Not necessarily the lowest
- Ex: $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$


## Finding the Molecular Formula of a Compound

Calculate the molecular formula of a compound whose molar mass is $60.0 \mathrm{~g} / \mathrm{mol}$ and empirical formula is $\mathrm{CH}_{4} \mathrm{~N}$.

1) Analyze List the knowns and the unknown.
(2) Calculate Solve for the unknown.

Evaluate Does the result make sense?

# 10. 3 Percent Composition and Chemical Formulas 

- Assignment:
- For tomorrow-Read Lab p. 304
- Ch. 10 test Friday

