Finding Missing Numbers in a Multiplication Table

Find $24 \div 6$.
You can think of a division problem as a multiplication fact with a missing factor.

Write a missing factor equation.
$24 \div 6=n \quad 6 \times n=24$
6 times what number equals 24 ?
Use a multiplication table. Follow the steps.

1. Find the factor you know, 6 , in the first column of the table.
2. Go across the row to the product, 24 .
3. Go straight to the top of that column. The number at the top of the column is 4 .
The missing factor is 4 .

$$
24 \div 6=4 \quad n=4
$$

missing facto							
\mathbf{X}	0	1	2	3	4		
0	0	0	0	0	0		
1	0	1	2	3	4		
2	0	2	4	6	8		
3	0	3	6	9	12		
4	0	4	8	12	16		
5	0	5	10	15	20		
6	0	6	12	18	$\mathbf{2 4}$		

Use a multiplication table to find the value for n that makes the equation true.

1. $8 \div 2=n$
2. $12 \div 4=n$
3. $15 \div 5=n$
\qquad
\qquad
4. $10 \div 5=n$
5. $20 \div 4=n$
6. $30 \div 5=n$
\qquad
\qquad
\qquad
7. Communicate How can you use a multiplication table to find $16 \div 4$?
