Name

Making Sense of Multiplication and Division Equations

Remember that an equation is a number sentence that uses an equal sign (=) to show that the value to its left is the same as the value to its right.

 $2 \times 3 = 6$ is an example of a multiplication equation.

Some equations have letters in them or *unknowns*.

This equation means: 10 is equal to 40 divided by some number.

You can find the value of *n* that makes the equation true or equal on each side by thinking of multiplication or division facts.

Think: You know that $40 \div 10 = 4$, so n = 4.

In **1–8**, write a basic fact that is related to each equation. Then find the value for *n* that makes the equation true.

1.	81 = 9 × <i>n</i>	2. $n \times 4 = 0$	3. 7 = 49 ÷ <i>n</i>	4. 16 ÷ <i>n</i> = 4
5.	8 = 56 ÷ <i>n</i>	6. $n \times 5 = 15$	7. 6 = 48 ÷ <i>n</i>	8. 5 × <i>n</i> = 40

9. Critique Reasoning Alex decides that $21 \div 3 = 7$ is NOT a true equation. Is Alex correct? Explain.