Directions: Answer the following word problems using the acceleration equation given in class. Make sure you show ALL of your work and do not forget your final units.

Acceleration Practice Problems

1.	A car's velocity changes from 5 m/s north to 60	m/s north	in 20 seconds.	Calculate the
		2		
	car's average acceleration.			

- 2. As a roller coaster starts down a hill, its speed is 10 m/s. Three seconds later, its speed is 32 m/s at the bottom of the hill. What is the roller coaster's acceleration?
- 3. A swimmer speeds up from 1.1 m/s to 1.3 m/s during the last 20 seconds of the workout.

 What is the acceleration of the swimmer during this interval?
- 4. A satellite's original velocity is 10,000 m/s. After 60 seconds, it is 5,000 m/s. What is the satellite's acceleration?
- 5. A runner begins the reaches a maximum velocity of 5.5 km/h. After 2 hours, what is the runner's acceleration?

Math Skills 💃

LESSON 3

Solve for Acceleration

Acceleration is a measure of how much the velocity of an object changes in a unit of time. Acceleration is measured in units such as m/s².

Acceleration is the change in velocity during a time interval divided by the time interval during which the velocity changes. This can be shown by the equation below, where a = acceleration, $v_i =$ final speed, $v_i =$ initial speed, and t = total time.

$$\alpha = i \frac{(v_f - v_l)}{v_l + v_l + v_l}$$

Pablo is running sprints. At 10 seconds, his speed is 2 m/s. At 20 seconds, his speed is 4 m/s. What was his acceleration during this time? To solve this problem, follow the steps below.

Step 1 Identify the variables given in the problem.

Subtract to find the time interval.

$$v_f = 4 \text{ m/s}$$

 $v_l = 2 \text{ m/s}$
 $t = 20 \text{ s} - 10 \text{ s} = 10 \text{ s}$
 $v_l = 20 \text{ s} - 10 \text{ s} = 10 \text{ s}$

Step 2 Substitute the known values to solve the equation.

You are solving for a, the acceleration

$$a = \frac{(v_f - v_i)}{t}$$

$$a = \frac{(4 \text{ m/s} - 2 \text{ m/s})}{10 \text{ s}}$$

$$a = 0.2 \text{ m/s}^2$$

Practice

- 1. After 30 s, a runner is sprinting at 3 m/s. But, 10 s later, the runner is sprinting at 3.8 m/s. What is the runner's acceleration during this time?
- 3. Kiko is coasting on her bicycle down a hill. After 3 s, her speed is 10 m/s. After 8 s, her speed is 25 m/s. What is her acceleration during this time?
- 2. A car was moving at 14 m/s. After 30 s, its speed increased to 20 m/s. What was the acceleration during this time?
- 4. Han's younger sister is riding her tricycle in a straight line. After 3 s, her speed is 0.5 m/s. After 5 s, her speed is 1.5 m/s. What is her acceleration during this time?