Weight Watchers

Problem: How is weight different than mass?

Materials: an object, a balance, a spring scale

Procedure:

- 1. Measure and the mass of the object in <u>grams</u>. Convert the object's mass to units of <u>kilograms</u>. Record the mass of the object in kilograms in the data table.
- 2. Use the equation to calculate the weight of the object on Earth. Record the calculated weight in *Newtons*.
- 3. Check to see if your calculated weight is accurate by measuring the weight using the spring scale. Record the measured weight in *Newtons*.

Data:

Mass of Object (kg)	Calculated Weight of Object on Earth	Measured Weight of Object on Earth
	WEIGHT = MASS x 9.8 in Newtons in kg	(Newtons)

Conclusion:

- 1. Was the calculated weight the same as the measured weight? If there is a difference, explain why.
- 2. Jupiter's gravitational force is about 2.4 times stronger than the Earth's, which would make everything weigh 2.4 times heavier.
 - a. What would the object you measured weigh on Jupiter? Show your work.
 - b. Why do you think Jupiter has a larger gravitational force than Earth?

- c. Jupiter has 16 moons that orbit it. Why do you think Jupiter has so many moons, while Earth only has one?
- 3. The moon's gravitational force is only 1/6 of the Earth's gravitational force.
 - a. What would the object you measured weigh on the Moon? Show your work.
 - b. Why does the moon have less gravity than the Earth?
 - c. If you traveled to the moon, would your mass change?
 - d. Do you think objects would fall faster or slower on the moon? Explain.
- 4. Explain why you agree or disagree with the following statement.

 Weight depends on where you are, but mass does not.

