Math Skills 😤

LESSON 2

Solve for Efficiency

A machine's efficiency is the ratio of the output work to the input work. This can be represented by the equation below, where efficiency is given in %, $W_{\rm out}$ = output work (in joules), and $W_{in} = input work$ (in joules).

efficiency =
$$\frac{W_{\text{out}}}{W_{\text{in}}}$$

You can rearrange the equation to solve for either of the other variables.

$$W_{\text{out}} = \text{efficiency} \cdot W_{\text{in}}$$
 $W_{\text{in}} = \frac{W_{\text{out}}}{\text{efficiency}}$

Sal does 300 J of work pulling the rope on a pulley to lift a barrel. The output work of the pulley is 270 J. What is the efficiency of the pulley?

Step 1 Identify the variable you will solve for and choose the appropriate equation.

efficiency =
$$\frac{W_{\text{out}}}{W_{\text{in}}}$$

Step 2 Substitute the known values to solve the equation.

efficiency =
$$\frac{270}{300}$$

efficiency = 0.9

Step 3 Multiply by 100 to convert the decimal to a percentage.

The efficiency of the pulley is 90%.

Practice

- 1. Jill does 270 J of work pulling the rope on a pulley to lift a crate. The output work of the pulley is 235 J. What is the efficiency of the pulley?
- 3. Rea does 60 J of work with a lever. The output work of the lever is 55 J. What is the efficiency of the lever?
- 2. A machine needs 250 J of input work to do 140 J of output work. What is the efficiency of the machine?
- 4. Morgan does 50 J of work with a lever that has an efficiency of 92%. What is the output work of the lever?

A.F	Data	Class
Name	Date	Class
1101116	 	

Math Skills 😤

LESSON 2

-Solve for Mechanical Advantage

A machine's mechanical advantage is the ratio of the output force exerted to the input force applied. This can be shown by the equation below, where MA = mechanical advantage (no units), $F_{\text{out}} = \text{output force}$ (in newtons), and $F_{\text{in}} = \text{input force}$ (in newtons).

$$MA = \frac{F_{\text{out}}}{F_{\text{in}}}$$

You can rearrange the equation to solve for either of the other variables.

$$F_{\text{out}} = MA \cdot F_{\text{in}}$$
 $F_{\text{in}} = \frac{F_{\text{out}}}{MA}$

Sue is separating two boards with a crowbar. She applies a force of **300** N to the end of the crowbar. The force exerted on the board is **900** N. What is the mechanical advantage of the crowbar?

Step 1 Identify the variable you will solve for and choose the appropriate equation. You are solving for mechanical advantage.

$$MA = \frac{F_{\text{out}}}{F_{\text{in}}}$$

Step 2 Substitute the known values to solve the equation.

$$MA = \frac{900}{300}$$

$$MA = 3$$

The mechanical advantage of the crowbar is 3.

Practice

- 1. Priya uses a nutcracker to break an almond. She applies a force of 22 N on the nutcracker. The force exerted on the almond is 66 N. What is the mechanical advantage of the nutcracker?
- 3. Amal uses a pulley to lift a concrete block. She applies a force of 95 N. The force exerted on the concrete block is 95 N. What is the mechanical advantage of the pulley?
- 2. Karim applies an input force of 28 N to a rake. The rake has an output force of 14 N. What is the mechanical advantage of the rake?
- 4. Jain applies an input force of 100 N to a lever that has a mechanical advantage of 3. What is the output force?