$\qquad$

## Chapter 5 The Periodic Table

## Calculating Average Atomic Mass

Carbon has two stable isotopes. Carbon-12 has an assigned atomic mass of 12.0000 and a percentage in nature of $98.93 \%$. The atomic mass of carbon-13 is 13.0034 and its percentage in nature is $1.070 \%$. What is the average atomic mass for carbon?

## 1. Read and Understand

What information are you given?
carbon-12: atomic mass $=12.0000, \%$ in nature $=98.93$
carbon-13: atomic mass $=13.0034, \%$ in nature $=1.070$
2. Plan and Solve

What unknown are you trying to calculate?
Average atomic mass for carbon $=$ ?
What equation can you use?
(atomic mass C-12) (\% C-12) + (atomic mass C-13) (\% C-13)
$=$ average atomic mass of C
Convert the percentages to decimals and multiply the atomic mass of each isotope by the decimal representing its percentage in nature.
$(12.0000)(0.9893)=11.8716$ rounded to 11.87
$(13.0034)(0.01070)=0.1391364$ rounded to 0.1391
Add the products of the two multiplications to find the average atomic mass for carbon.
$11.87+0.1391=12.0091$ rounded to 12.01

## 3. Look Back and Check

Is your answer reasonable?
Because almost all the carbon atoms in nature are carbon-12 atoms, the average atomic mass of carbon (12.01) is close to the atomic mass of carbon-12 (12.0000).

## Math Practice

On a separate sheet of paper, solve the following problems.

1. The element boron has two stable isotopes. Boron-10 has an atomic mass of 10.0129 and a percentage in nature of $19.78 \%$ The atomic mass of boron-11 is 11.0093 and its percentage in nature is $80.22 \%$ What is the average atomic mass for boron?

$$
(0.1978 \times 10.0129)+(0.8022 \times 11.0093)=1.981+8.832=10.813
$$

2. Nitrogen has two stable isotopes, nitrogen-14 and nitrogen-15.
```
100.00% - 99.63% = 0.37%
```

