Why are ionic compounds so easy to name? Because most ionic compounds can only form one way, using the oxidation numbers. In covalent compounds, though, non-metals can sometimes combine in multiple ways (carbon monoxide; carbon dioxide). So, covalent compounds use prefixes.

Transition Metals Can Have More Than One Oxidation Number

Iron (II) has an oxidation number of 2+ Iron (III) has an oxidation number of 3+. When naming them you must specify WHICH ONE.

> FeO—Iron (II) oxide Fe₂O₃— Iron (III) oxide

Mono - 1 $\frac{1}{1}$ Hexa - 6 $\frac{1}{1}$ Hepta - 7 $\frac{1}{1}$

Tri - 3 Octa - 8Tetra - 4 Nona - 9

Penta -5 Deca -10

How to remember prefixes:

Monorail – one rail train Monocle – glasses for one eye; single lens (Colonel Klink).

<u>Di</u>lemma – struggle between 2 choices.

<u>Tri</u>cycle – 3 wheels

<u>Pentagon</u> – 5 five sided military building in Washington, D.C.

Octopus – 8 legs

Decade – 10 years

Polyatomic Ions					
Oxidation #	Formula				
1+	ammonium	$N{H_4}^+$			
1-	acetate	$C_2H_3O_2^-$			
2-	carbonate	$\mathrm{CO_3}^{2\text{-}}$			
2-	chromate	CrO ₄ ²⁻			
1-	hydrogen carbonate	HCO ₃ ¹⁻			
1+	hydronium	$\mathrm{H_3O}^+$			
1-	hydroxide	OH^{1-}			
1-	nitrate	NO_3^{1-}			
2-	peroxide	O_2^{2-}			
3-	phosphate	PO_4^{3-}			
2-	sulfate	SO_4^{2-}			
2-	sulfite	SO_3^{2-}			

Name:			
Period:			

<u>M</u> etal or <u>N</u> on-metal?	Ionic or Covalent?	Name These Ionic Compounds	Use the Polyatomic Ion Chart on the front of the worksheet to	
M N Iron Oxide	Ionic	MgF ₂ Magnesium Fluor <u>-ide</u>	name these Polyatomic Ions:	
non emue	101110	Li ₂ O Lithium Ox-	HCO ₃ ¹⁻ <u>Hydrogen carbonate</u>	
Barium Chloride		NaCl Sodium Chlor-	SO ₄ ²⁻	
Carbon Dioxide		K ₂ O Potassium Ox	O ₂ ² -	
Magnesium Oxide		CaS Sulf	SO_3^{2-}	
Aluminum Fluoride		BeI ₂ Iod	NO ₃ ¹⁻ NH ₄ ⁺	
		AlBr ₃ Brom	CrO ₄ ²⁻	
Nitrogen Tribromide		CaF ₂	OH ¹⁻	
Chromium Fluoride		MgO		
Potassium Oxide		LiCl	PO ₄ ³⁻	

Define these (Greek Prefixes	1. CO ₂	A. Carbon monoxide	Name These Covalent Compounds
Penta =	Tetra =	2. C ₂ O ₄	B. Carbon dioxide	Si ₂ O ₃ Disiliconoxide
Nona =	Hexa =	3. C ₃ O ₅	C. Dicarbon monoxide	N ₃ Cl ₄ nitrogen tetrachloride
Mono =	Hepta =	4. CO	D. Tricarbon pentoxide	SO ₂ Sulfuroxide
Octa =	Deca =	5. C ₂ O	E. Dicarbon tetroxide	PO ₅ Phosphorousox
Tri =	Di =	6. CO ₈	F. Carbon octoxide	S_2F_4 sulfurfluor

Name these Polyatomic Compounds (Remember — no prefixes!)		Classify and Name These Compounds		
		Ionic, Co	ovalent, or Polyatomic	Name
CaSO ₄	Calcium	1. BaCl ₂	Ionic	Barium chloride
K ₂ CO ₃	carbonate	2. CO		
CuNO ₃	Copper (I)	3. Ag ₂ O		
NH ₄ Cl	chloride	4. K ₂ SO ₄		
$Mg(NO_3)_2$	Magnesium	5. MgBr ₂		
K ₃ PO ₄	Potassium	6. SO ₃		
Li ₂ (CrO ₄)	Lithium	7. P ₂ O ₄		
Mg(OH) ₂	M H	8. Be(CrO ₄)		
Al(PO ₄)	AP	9. LiF		
K(NO ₃)		11. CO ₂		
Ca ₂ SO ₃		12. OF ₂		