Name:			

Period:

Naming and Covalent Compounds

Ch. 19:5

Ion Notation

Find from number of protons

Na 1-

Find from p-e=charge OR Number of electrons: (+) lost or (-) gained.

Tells you: sodium (11 protons) and 1 electron lost (+), so only 10 electrons.

How many protons and electrons does S ²⁻ have?	How many electrons does K ¹⁺ have?	Give the ion notation for Calcium that lost 2 electrons.
Give the ion notation for an atom with 8 protons and 10 electrons.	Fe ³⁺ :did it gain or lose electrons and how many?	Give the ion notation for an atom with 34 protons and 36 electrons.

Making Ionic Compounds

Way 1

1 Li¹⁺ O ²⁻

Write the chemical symbols with the oxidation numbers.

 $2 \text{ Li}_{2}^{1+} Q_{1}^{2-}$

3 Li₂O

numbers not the signs.

Reduce numbers or

drop ones and put the symbols together.

You know it is a balanced compound because 2(1) + 1(-2) = 0. Balanced ionic compounds have a neutral charge.

Way 2

1. $Mg^{2+} Cl^{1-}$

Write the chemical symbols with the oxidation numbers.

 $2.\ Mg^{2+}\ Cl^{1-}\ Cl^{1-}\ ^{\text{Add enough ions}}_{\text{charges equal zero.}}$

Add up the ions and write the compound as a formula.

3. MgCl₂

Again, you know it is a balanced compound because 1(2) + 2(-1) = 0. Balanced ionic compounds have a neutral charge.

Make the ionic compound of magnesium oxide.	Make lithium chloride.	Combine Fe(II) and O.
Combine Iron(III) and Fluorine.	Combine sodium and carbonate (CO ₃) ²⁻ .	Make potassium sulfate (SO ₄ ²⁻).

Name:			
Dariad:			

Ch. 19:5

Covalent Bonding

by itself and 8 by sharing.

You must fulfill two criteria when making covalent bonds:

- 1) the individual atoms must have the proper number of valence electrons;
- 2) when bonded each atom must have 8 electrons through sharing.

Put the number you need in the middle to share.

Read each oxygen as 6 v.e. plus 2 for the 2 bonds = 8!

O O O O O

A double covalent bond.

Each has 6 valence electrons

Short hand $\begin{array}{c} 6 \text{ v.e.} \\ 8 \text{ shared} \\ \hline \\ \times \text{ Cl} \times \\ \times \text{ v.e.} \\ \hline \\ 7 \text{ v.e.} \\ \hline \\ 8 \text{ shared} \\ \hline \\ \end{array}$

Oxygen dichloride: OCl₂

Make F ₂ .	Make S ₂ .	Make N ₂ .
Make oxygen difluoride: OF ₂	Make carbon dioxide: CO ₂	Make methane: CH ₄ .

Naming Compounds

Ionic compounds				
(metals and non-metals):				

Name the metal and non-metal and change the ending to "-ide".

Covalent compounds (2 non-metals):

Use the prefixes to show how many atoms are there.

Polyatomic compounds (3 or more elements):

Use the names on the polyatomic ion chart.

BeO: Beryllium ox <u>ide</u> MgCl ₂ : Magnesium chlor <u>ide</u> .	CO: Carbon <u>mon</u> oxide CO ₂ : Carbon <u>di</u> oxide.	Al(PO ₄): Aluminum <u>phosphate</u> Be(CrO ₄): Beryllium <u>chromate</u> .
1. NF ₃	6. CS ₂	
2. FeO	7. Ca ₃ P ₂	
3. Na ₂ SO ₃	8. NaCl	
4. LiBr ₂	9. LiOH	
5. O ₂ Cl ₄	10. N ₂ F ₃	