| Ch | 19.6 | |----|------| | Name: |
 | _ | |---------|------|---| | Period: | | | ## **Naming and Covalent Compounds** Naming Type: Ionic; Covalent; Polyatomic. Compound Name | 1. MgCl ₂ | <u>Ionic</u> | Magnesium chloride | |--------------------------------------|--------------|--------------------| | 2. PF ₃ | | | | 3. CaO | | | | 4. K ₃ (PO ₄₎₂ | | | | 5. MgCl ₂ | | | | 6. CO | | | | 7. S ₂ O ₄ | | | | 8. Mg(CrO ₄) | | | | 9. NaF | | | | 10. H ₂ O | | | | 11. CO ₂ | | | | 12. OBr ₂ | | | Use only for Polyatomic Compounds | Polyatomic Ions | | | | | |-----------------|--------------------|---------------------------------|--|--| | Oxidation # | Name | Formula | | | | 1+ | ammonium | $N{H_4}^+$ | | | | 1- | acetate | $C_2H_3O_2^{-1}$ | | | | 2- | carbonate | $\mathrm{CO_3}^{2-}$ | | | | 2- | chromate | CrO ₄ ²⁻ | | | | 1- | hydrogen carbonate | HCO ₃ ¹ - | | | | 1+ | hydronium | $\mathrm{H_{3}O}^{1^{+}}$ | | | | 1- | hydroxide | OH1- | | | | 1- | nitrate | NO ₃ ¹⁻ | | | | 2- | peroxide | O_2^{2-} | | | | 3- | phosphate | PO ₄ ³⁻ | | | | 2- | sulfate | SO_4^{2-} | | | | 2- | sulfite | SO_3^{2-} | | | Use only for Covalent Compounds | Greek Prefixes | | | | |---|--|--|--| | Mono - 1
Di - 2
Tri - 3
Tetra - 4
Penta - 5 | Hexa – 6
Hepta – 7
Octa – 8
Nona – 9
Deca – 10 | | | | | | | | | Name: | | | | | |---------|--|--|--|--| | Dariad: | | | | | Ch. 19:6 Covalent Bonding by itself and 8 by sharing. You must fulfill two criteria when making covalent bonds: - 1) the individual atoms must have the proper number of valence electrons; - 2) when bonded each atom must have 8 electrons through sharing. Short hand 6 v.e. 8 shared $8 \text{ share$ Oxygen dichloride: OCl₂ | Make Cl ₂ . | Make O ₂ . | Make P ₂ . | |---|--------------------------------------|-----------------------| | Make Sulfur difluoride: SF ₂ | Make sulfur dioxide: SO ₂ | Make water. | Reviewing Start getting ready for the test. Know: valence electrons; oxidation numbers; metals vs. non-metals; dot diagrams; ion notation; cation versus anion; differences between ionic, covalent and polyatomic compounds; how to name compounds; how to make ionic compounds; how to make covalent compounds. | How many protons and electrons does O ²⁻ have? Is it a metal or non-metal? | How many electrons does K ¹⁺ have? Is it a cation or an anion? | Give the ion notation for Calcium that lost 2 electrons. Cation or anion? | |---|---|---| | Make the ionic compound of Lithium oxide. | Make Iron (III) chloride. | Combine Sodium and phosphate (PO ₄) ³⁻ |