\qquad
\qquad
\qquad

Chapter 11 Motion

WordWise

Complete the sentences by using one of the scrambled vocabulary words below.

vrlaeeit oinotm	mefar fo ecrneeefr	gvaeera dspee
levotciy	nerlia	centidsa
esdep	erfe lafl	aulsettrn crovet
atnicoelecar	rotcev	nnilraeon

An expression for \qquad is $\left(v_{f}-v_{i}\right) / t$.

A quantity that has both magnitude and direction is called a(n) \qquad
The total distance traveled divided by the total time is

A speed-time graph in which data points form a straight line is an example of a(n) \qquad graph.

Common units for \qquad include meters per
second (m / s).
In order to accurately and completely describe the motion of an object, a(n) \qquad is necessary.

You can determine \qquad by measuring the length of the actual path between two points in space.

Two or more vectors combine to form a(n) \qquad .

Objects in \qquad accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

A curve often connects data points on a(n) \qquad graph.

Together, the speed and direction in which an object is moving are called \qquad -.

Movement in relation to a frame of reference is \qquad .

