Name: \qquad
Period: \qquad

Speed

Speed is how fast something is going. Precisely, it is the amount of distance traveled in a certain amount of time. The standard units are meters per second, but any units of distance/time will work.

Speed equal change of distance divided by change of time.
$\Delta \mathrm{D}=\mathrm{D}_{2}-\mathrm{D}_{1}$
$\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}$

A car 4 meters away for 2 hours has a speed of zeroit hasn't moved. That's why we have to use $\Delta \mathrm{D} / \Delta \mathrm{T}$ instead of D / T-the object has to be moving.

A plane flies 4000 miles in 5 hours. Calculate the plane's speed.		A car travels from 20 meters to 60 meters in 10 seconds. Calculate the car's speed.		A car travels at $60 \mathrm{~m} / \mathrm{s}$ for 8 seconds. Calculate the distance it travels.	
Step 1: variables $\begin{aligned} \mathrm{S} & =? \\ \Delta \mathrm{D} & =4000 \text { miles } \\ \Delta \mathrm{T} & =5 \text { hours } \end{aligned}$ Step 2: formula $\mathrm{S}=\Delta \mathrm{D} / \Delta \mathrm{T}$	Step 3: Solve for unknown variable: Already done: $\quad S=\Delta D / \Delta T$ Step 4: Put in numbers $\mathrm{S}=4000 \mathrm{mi} / 5 \mathrm{hr}$ Step 5: Calculate answer	Step 1: variables Step 2: formula	Step 3: solve for unknown variable: Step 4: Step 5:	Step 1: Step 2:	Step 3: Step 4: Step 5:

The Scientific Method:		
Really	\mathbf{R} Research	
Quiet	\mathbf{Q} Question	
Hippos	\mathbf{H} Hypothesis	
Eat	\mathbf{E} Experiment	
Dark	\mathbf{D}	Data
Chocolate	\mathbf{C}	Conclusions

\square

Experiments are how we gain data (evidence) to prove or disprove a hypothesis.

If experiments are going lead us to knowledge, we better know how to do them correctly so that our data really is proof!

Trials
A trial is one time an experiment is run.

Good experiments have several trials.
Why? Because to really proof something, and experiment must be repeatable by others. One time through an experiment proves nothing-there might have been a mistake, for instance.

A Data Table

Data from experiments are often recorded in data tables.

Trial	Time (sec)
1	2.5
2	3
3	3.1
4	2.8
5	2.9
Ave Time	$\mathbf{2 . 8 6}$

Usually, data changes a bit with each trial. Which one is best?

An average is better than an individual trial's data.

Variables

A variable is a part of an experiment that can change.

In most experiments there are many variables. When talking about speed we only need two: distance and time.

Procedures

Your procedure is how you perform an experiment.

Good data requires good experimental procedures. Spending time developing good procedures ensures your data will be accurate and your conclusion believable.

Your procedure is a list of how you did your experiment.

Name: \qquad
Period: \qquad

