
T. Trimpe 2008 http://sciencespot.net/

English vs. Metric Units

Which is larger?

A. 1 liter or gallon
B. 1 liter or 1 quart
C. 1 milliliter or fluid ounce

1 gallon $=3.79$ liters

$1 \mathrm{fl} \mathrm{oz}=29.573 \mathrm{ml}$
$112-\mathrm{oz}$ can of soda would equal approximately 355 ml .

1 quart $=0.946$ liters

It would take approximately $33 / 4$
1-liter bottles to equal a gallon.

Metric Units

Volume is the amount of space an object takes up.

The base unit of volume in the metric system in the liter and is represented by \mathbf{L} or \mathbf{l}.
Standard: 1 liter is equal to one cubic decimeter $\begin{gathered}10 \\ \mathrm{~cm}\end{gathered}$

Metric Units

1 liter $(\mathrm{L})=1000$ milliliters (mL)

1 milliliter $(\mathrm{mL})=1 \mathrm{~cm}^{3}($ or cc $)=1 \mathrm{gram} *$

Which is larger?

$$
\begin{aligned}
& \text { A. } 1 \text { liter o } 1500 \text { milliliters } \\
& \text { B. } 200 \text { milliliters or } 1.2 \text { liters } \\
& \text { C. } 12 \mathrm{~cm}^{3} \text { or } 1.2 \text { milliliters* }
\end{aligned}
$$

A liter is

the volume of a cube 10 cm on each side.

Measuring Volume

We will be using graduated cylinders to find the volume of liquids and other objects.

Read the measurement based on the bottom of the meniscus or curve. When using a real cylinder, make sure you are eye-level with the level of the water.

What is the volume of water in the cylinder? \qquad mL

Graduated cylinder

What causes the meniscus?
A concave meniscus occurs when the molecules of the liquid attract those of the container. The glass attracts the water on the sides.

Measuring Liquid Volume

What is the volume of water in each cylinder?

Pay attention to the scales for each cylinder.

Measuring Solid Volume

89 cm

We can measure the volume of regular object using the formula length \mathbf{x} width \mathbf{x} height.

\qquad X \qquad X \qquad $=$ \qquad
10 cm

We can measure the volume of irregular object using water displacement.

Amount of $\mathrm{H}_{2} \mathrm{O}$ with object $=$ \qquad

About of $\mathrm{H}_{2} \mathrm{O}$ without object $=$ \qquad
Difference $=$ Volume $=$ \qquad

