Metric Mania

Lesson 3: Volume

English vs. Metric Units

Which is larger?

A. 1 liter of 1 gallon

B. 1 liter or 1 quart

C. 1 milliliter or fluid ounce

1 fl oz = 29.573 ml 1 12-oz can of soda would equal approximately 355 ml.

1 gallon = 3.79 liters

It would take approximately 3 ¾ 1-liter bottles to equal a gallon.

1 quart = 0.946 liters

Metric Units

Volume is the amount of space an object takes up.

The base unit of volume in the metric system in the **liter** and is represented by **L** or **l**.

Standard: 1 liter is equal to one cubic **decimeter** cm

A liter is the volume of a cube 10 cm on each side. 10 cm 10 cm 10 cm

Metric Units

1 liter (L) = 1000 milliliters (mL)

1 milliliter (mL) = 1 cm^3 (or cc) = 1 gram^*

Which is larger?

A. 1 liter or 1500 milliliters

B. 200 milliliters or 1.2 liters

C. 12 cm³ or 1.2 milliliters*

Measuring Volume

We will be using **graduated cylinders** to find the volume of liquids and other objects.

Read the measurement based on the bottom of the meniscus or curve. When using a real cylinder, make sure you are eye-level with the level of the water.

What is the volume of water in the cylinder? ____mL

What causes the meniscus?

A concave meniscus occurs when the molecules of the liquid attract those of the container. The glass attracts the water on the sides.

Measuring Liquid Volume

What is the volume of water in each cylinder?

Pay attention to the scales for each cylinder.

Measuring Solid Volume

We can measure the volume of regular object using the formula **length x width x height**.

We can measure the volume of irregular object using water displacement.

Amount of H_2O with object = _____

About of H_2O without object = _____

Difference = Volume = _____

Click here for an online activity about volume.

Choose Lessons → Volume & Displacement