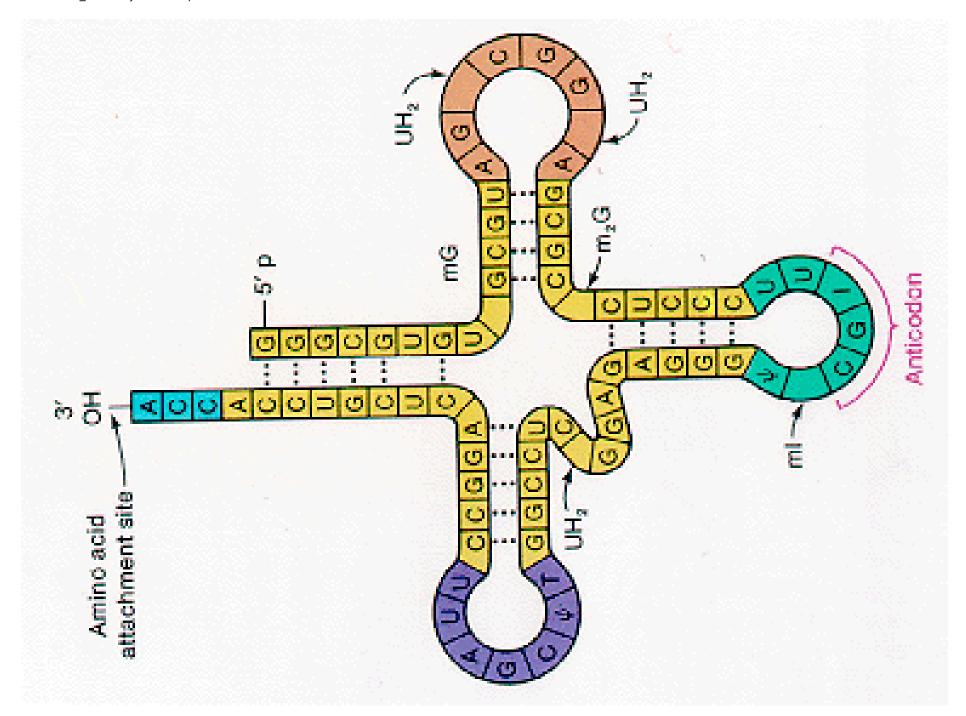
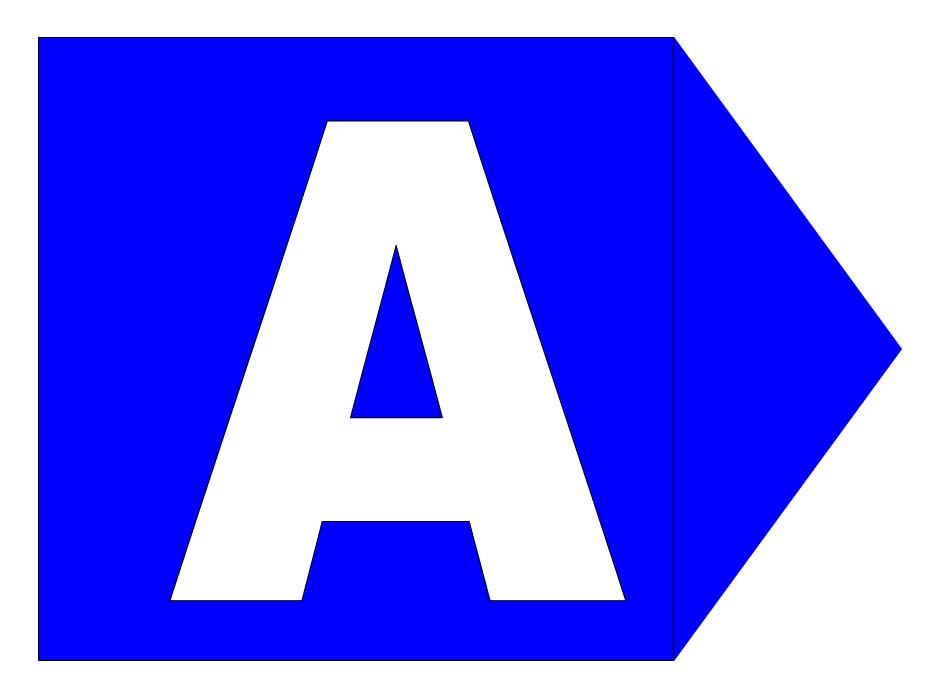


AUG is the start codon

http://virtuallaboratory.colorado.edu/ Biofundamentals/lectureNotes/Topic3-5_Making%20Proteins.htm


mRNA Codon Chart Read from 5' to 3'


		:			Second Position							
		U		С		Α		G				
		code	Amio Acid	code	Amio Acid	code	Amio Acid	code	Amio Acid			
	U	UUU	phe	UCU	ser	UAU	tyr	UGU	cys	U		
		UUC		UCC		UAC		UGC		С		
		UUA	leu	UCA		UAA	STOP	UGA	STOP	Α		
		UUG	164	UCG		UAG	STOP	UGG	trp	G		
	С	CUU	leu	CCU	рго	CAU	his -	CGU	arg	U	Third Position	
=		CUC		CCC		CAC	1113	CGC		С		
osition		CUA		CCA		CAA	gln	CGA		Α		
osi		CUG		CCG		CAG	giii	CGG		G		
t P	Α	AUU	ile met	AC U	thr	AAU	asn	AGU	ser	U		
Firs		AUC		AC C		AAC		AGC		С		
F		AUA		ACA	uii	AAA	lys	AGA	arg	Α		
		AUG		ACG		AAG		AGG		G		
	G	GUU	val	GCU	ala	GAU	asp	GGU	gly	U		
		GUC		GCC		GAC		GGC		С		
		GUA		GCA	ala	GAA	glu	GGA		Α		
		GUG		GCG		GAG		GGG		G		

http://plant and so il. unl. edu/crop technology 2005/User Files/Image/site Images/Table 1 gif. gif the properties of the properties of

tRNA anticodon chart Read from 3'- 5'

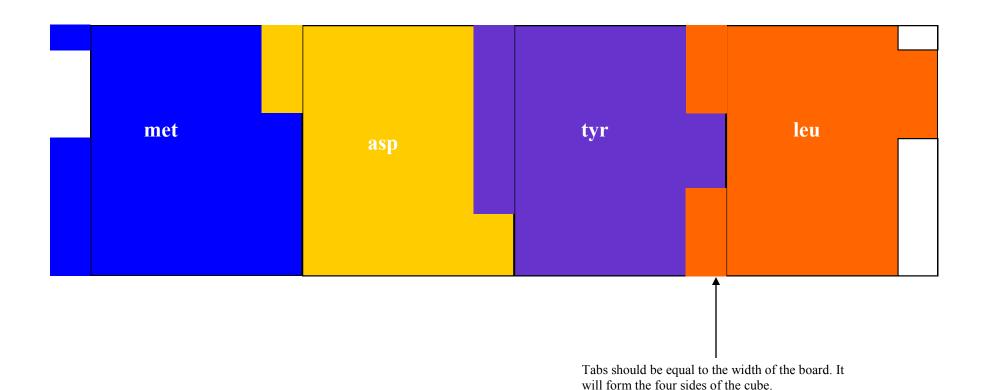
		2nd Position									
		U		C		A		G			
		anticodon	Amino Acid	anticodon	Amino Acid	anticodon	Amino Acid	anticodon	Amino Acid		
		UUU	lys	UCU	arg	UAU	iso	UGU	thr	U	
	U	UUC	lys	UCC	arg	UAC	Start/met	UGC	thr	C	
		UUA	asn	UCA	ser	UAA	iso	UGA	thr	A	
		UUG	asn	UCG	ser	UAG	iso	UGG	thr	G	
		CUU	glu	CCU	gly	CAU	val	CGU	ala	U	
		CUC	glu	CCC	gly	CAC	val	CGC	ala	C	
	C	CUA	asp	CCA	gly	CAA	val	CGA	ala	A	
F		CUG	asp	CCG	gly	CAG	val	CGG	ala	G	
		AUU	stop	ACU	stop	AAU	leu	AGU	ser	U	
	A	AUC	stop	ACC	trp	AAC	leu	AGC	ser	C	
	A	AUA	tyr	ACA	cys	AAA	phe	AGA	ser	A	
		AUG	tyr	ACG	cys	AAG	phe	AGG	ser	G	
	G	GUU	glu	GCU	arg	GAU	leu	GGU	pro	U	
9		GUC	glu	GCC	arg	GAC	leu	GGC	pro	C	
		GUA	his	GCA	arg	GAA	leu	GGA	pro	A	
		GUG	his	GCG	arg	GAG	leu	GGG	pro	G	

DNA/RNA Nucleotide Card

DNA Nucleotide Card

DNA/RNA Nucleotide Card

DNA/RNA NucleotideCard



RNA Nucleotide Card

3-D Protein Puzzle

The protein puzzle can be made from foam board, foam craft sheets, card board, Styrofoam or even Legos®.

- Foam craft sheets have the advantage of being large and can be cut with scissors. It may not be stiff enough, however, two or three sheets can be glued together and then glued to cardstock. Cut the tabs and interlocks before gluing together.
- Legos® are rigid and would work well but this application requires a lot of Legos®. Save on the number of blocks by making only the outer edge. Glue or tape the blocks to a sheet of cardstock.

TRUE-FALSE CARDS

Directions:

mRNA is formed from RNA

polymerase in a process

called translation.

Divide the cards into two groups, true statements about protein synthesis and false statements.

A codon is made up of 4

Nucleotides read in a specific

order.

In DNA, adenine binds with thymine and cytosine binds with guanine.

The ribosome forms a peptide

bond between two amino

acids on its active sites.

	I	1	
In RNA, adenine binds with thymine and cytosine binds with uracil.	When the mRNA strand leaves the nucleus, it moves into the cytoplasm and binds to a ribosome, the site of protein synthesis.	The building blocks of nucleic acids are amino acids.	UAA does not have an anticodon on a tRNA
Transcription takes place in the nucleus while translation takes place in the cytoplasm.	The ribosome has two binding sites, one for the mRNA and one for the tRNA.	The process of decoding the mRNA strand into a protein is called transcription.	Proteins synthesized in the cell are used as enzymes within the cell.
A gene is a sequence of DNA nucleotides that codes for a type of protein or RNA.	The ribosome attaches to a start codon on mRNA to begin reading the code.	The nitrogen bases on the tRNA is called the anticodon.	There are 20 amino acid and therefore 20 codons needed for transcription and translation.

The polypeptide begins

folding in the ER.

R	In DNA, adenine binds with thymine and cytosine binds with guanine.		
In RNA, adenine binds with thymine and cytosine binds with uracil.	When the mRNA strand leaves the nucleus, it moves into the cytoplasm and binds to a ribosome, the site of pro-tein synthesis.	The building blocks of nu-cleic acids are amino acids.	UAA does not have an anticodon on a tRNA
Transcription takes place in the nucleus while translation takes place in the cytoplasm.	The ribosome has two bind-ing sites, one for the mRNA and one for the tRNA.	The process of decoding the mRNA strand into a protein is called transcription.	Proteins synthesized in the cell are used as enzymes within the cell.
A gene is a sequence of DNA nucleotides that codes for a type of protein or RNA.	The ribosome attaches to a start codon on mRNA to begin reading the code.	The nitrogen bases on the tRNA is called the anticodon.	There are 20 amino acid and therefore 20 codons needed for transcription and translation.
mRNA is formed from RNA polymerase in a process called translation.	A codon is made up of 4 Nucleotides read in a specific order.	The polypeptide begins	The ribosome forms a peptide bond between two amino acids bound to tRNA on its active sites.