University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 1: Multiplying Products of Prime Powers

Each positive integer can be expressed (in a unique way, according to the Fundamental Theorem
of Arithmetic) as a product of powers of the prime numbers. For example,

374556 = 22.31.50.74.119.131.179.199.230.290. ...

To state it more precisely, for each positive integer m there exists a unique sequence S(m) =
(k1, k2, k3, - - -) of natural numbers (i.e., nonnegative integers) such that

k k k
m:pll.pQQ.p33.

where p; is the ith prime number (i.e., p1 = 2, po = 3, p3 = 5, etc.). Hence, to identify m, it
suffices to describe the sequence S(m). Using our example above, we get that

5(374556) = (2,1,0,4,0,1,0,0,0,-- )

A more economical description of the sequence would omit the trailing zeros (much as we rou-
tinely omit leading zeros from our numerals), yielding a sequence of length six: (2,1,0,4,0,1).

Develop a program that, given the sequences S(m) and S(r) identifying positive integers m
and 7, respectively, calculates the sequence S(mr) that identifies the product of m and 7.

Input: The first line contains a positive integer n indicating how many instances of the problem
are to be solved. Each instance of the problem is described by two sequences (corresponding to
S(m) and S(r)), one per line. Each sequence is given by a natural number ¢ giving its length,
followed by its ¢ elements. For convenience, you may assume that ¢ < 20.

Output: For each instance of the problem given as input, the program should output the two
sequences (S(m) and S(r)), separated by an asterisk (to indicate multiplication), followed by
an equals sign and the sequence S(mr). For formatting details, see the sample output below.



Sample input: Resultant output:

<21 0401>%<>=<21040 1>

210401 <00312301>*%x<13002>=<13033230 1>
<4 1>*%x<01002>=<4200 2>

1300 2
41

3

6

0
700312301
4

2

501002



University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 2: The 3n + 1 Problem

Given a positive integer k, the 3n + 1 sequence starting at k£ has as its first element k itself.
For any particular element m in the sequence, where m # 1, the next element is either 3m + 1
(if m is odd) or else m/2 (if m is even). The sequence ends with the first occurrence of 1.

For example, the 3n + 1 sequence starting at 7 is

72211341752261340201051684 21

This sequence has length 17.

The Collatz conjecture states that for every k, the 3n + 1 sequence starting at k has finite
length. Despite the efforts of many mathematicians over many years, this conjecture has yet
to be proved or disproved.

Develop a program that, given a positive integer k, computes the length of the 3n 4+ 1 sequence
starting at k, as well as the largest value in that sequence.

Hint: If a and b are positive integers, the expression a % b (or a mod b in some programming
languages) produces the remainder of the division of a by b. (E.g., 13 % 5 yields 3; 28 % 7
yields 0.)

Input: The first line contains a positive integer n indicating how many instances of the problem
are described on the succeeding n lines. Each instance of the problem is described on a single
line containing a single positive integer.

Output: For each positive integer k given as input, produce a message that identifies k, the
length of the 3n + 1 sequence starting at k£, and the maximum value in that sequence. See the
sample output below for proper formatting.

Sample input: Resultant output:

4 For 7, sequence length is 17 and maximum value is 52.

7 For 40, sequence length is 9 and maximum value is 40.

40 For 1, sequence length is 1 and maximum value is 1.

1 For 3456, sequence length is 119 and maximum value is 9232.
3456



University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 3: Polygon Area
A polygon is defined to be a plane figure formed by line segments such that

(1) each line segment intersects exactly two others, one at each endpoint, and
(2) no two line segments with a common endpoint are collinear (i.e., lie on the same line).

The endpoints of the line segments are referred to as the polygon’s vertices (singular: verter)
and the line segments are referred to as its sides.

A polygon is said to be convez if, for any two vertices v and v, the line segment connecting
them contains no points exterior to the polygon.

Below are two examples of polygons. The one on the left is convex; the one on the right is
not, as is demonstrated by the dashed line segment, which connects two vertices and contains
points exterior to the figure. For this problem, we are interested in convex polygons only.

Figure 1: A Convex Polygon and a Non-convex Polygon

A standard way of representing a polygon is as a sequence (p1,pa,---,pm) of vertices, where,
for each ¢ satisfying 1 < i < m, line segment p;p;+1 forms a side of the polygon, as does pp,p1.

Develop a program that, given a convex polygon, computes its area.

Hint 1: By drawing some new edges in the right places (but always connecting vertices of the
polygon), a convex polygon can be seen to be comprised of triangles. Hence, to compute the
area of a convex polygon, it suffices to identify such a set of triangles and to sum their areas.

Hint 2: A triangle having sides of length a, b, and ¢ has area

\/S(S —a)(s—0b)(s—c)

where s = %b*c

. This is known as Heron’s formula.



Hint 3: The distance between points (z1,y1) and (z2,y2) is

\/(331 —x2)% 4 (y1 — y2)?

Input: The first line contains a positive integer n indicating how many polygons are to be
processed. Each polygon is described beginning with a positive integer m > 2 indicating how
many vertices it has, followed by a sequence of vertices, one per line. Each vertex is given by
two real numbers representing, respectively, its z- and y-coordinates.

Output: For each polygon provided as input, display its area on a line.

Sample input: Resultant output:
4 1.0

3 35.0

0.0 1.0 13.75

-1.0 0.0 73.65



University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 4: Adjacent Repeated Substrings

In the realm of character strings, we use the term square to refer to any string that is of the
form zx, where x is itself a string. That is, a square is composed of two copies of the same
string, one after the other. (The term “square” comes from the fact that zz is often written
as 22.) For example, abbabb = (abb)?

Consider the string S = aabbabbababbabaa. To explicitly show the positions at which the
characters occur, here is another depiction of S:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S O T S SO S
lalalblblalblblalblalblblalblalal]
T S S W S

Notice that positions are numbered starting at zero.

Embedded within S are several substrings that are squares. For example, S[1..6] = (abb)? and
S[3..12] = (babba)?.

Develop a program that, given a string of characters, finds all substrings that are squares of
length at least six.

Input The first line contains a positive integer n indicating how many subsequent character
strings are provided as input. Those strings appear on the next n lines, one per line. Each
string is composed of letters.

Output For each character string given as input, display the string on one line and then, on
subsequent lines, identify each of its substrings that are squares of length at least six, one per
line. To identify a square, display its starting position, followed by a space, followed by the first
half of the square. The squares should be listed in decreasing order by length. For two squares
of the same length, they should be listed in ascending order by starting position. Following the
last square listed, put a blank line.

Sample input and output is on the next page.



Sample input

abaabaaaba
aabaaab
aabbabbababbabaa

Resultant output
abaabaaaba

2 aaba

0 aba

1 baa

aabaaab

aabbabbababbabaa
babba

abbab

bbaba

abb

bba

bab

bab

O W N~ O W



University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 5: Normal Form Polynomials in Plain Text

A polynomial is an expression of the form

ar® + o1t 4 oozt 4+ o + et + o
where k (called the degree of the polynomial®) is a nonnegative integer and the ¢;’s (called the
coefficients), are real numbers. Each subexpression of the form ¢;z¢ is called a term. The first
term, c;z¥, is called the leading term, and the last one, coz?, is called the constant term. (Note
that coz? = ¢p - 1 = ¢g, so the value of the last term does not depend upon z and hence is a
constant.)

Here we shall be concerned only with polynomials having integer coefficients. An example of
such a polynomial is

—52° + 12* + 02 + 1322 + —32' + 42°

If this looks odd to you, it’s because in the standard way of writing a polynomial, we

(a) omit 20 from the constant term

(b) omit the exponent 1 (in x!)

(c) omit any coefficient 1 (except if it is in the constant term)

(d) omit any term whose coefficient is zero (unless it is the only term!)

(e) turn any negative coefficient (unless it is in the leading term) into a positive one by replacing
the binary plus sign preceding it by a binary minus sign.

A polynomial written in this way is said to be in normal form. For example, the normal form
of the polynomial above is

—52° + 2* + 1322 — 32 + 4

Develop a program that, given the coefficients of a polynomial, displays the normal form of that
polynomial. Because of the limitations of “plain text”, there is no really nice way of displaying
exponents. The best we can do is to display a polynomial on two lines, with the exponents on
the first line and the rest of the symbols, lined up properly with the exponents, on the second
line, as in

5 4 2
-bx +x + 13x - 3x + 4

!Technically, for k > 0 to be the degree requires that ¢ # 0, but we will not worry about that here.



Input: The first line contains a positive integer n indicating how many polynomials are de-
scribed on succeeding lines. Each polynomial is described on two lines, the first of which
contains its degree k and the second of which contains its k+ 1 coefficients (beginning with the
coefficient of its leading term and ending with the coefficient of its constant term).

Output: For each polynomial given as input, display it in normal form, on two lines, as
described above and as exemplified in the sample output below, followed by a blank line. In
particular, each binary operator (plus or minus) separating adjacent terms should be placed so
that exactly one column to its left and one column to its right are blank (in both rows).

Sample input:

-51013-34
14
1500-300000003202 -4

Resultant output:

-bx +x + 13x - 3x + 4

14 11 3
15x - 3x + 32x + 2x - 4



University of Scranton
ACM Student Chapter / Computing Sciences Department
20th Annual High School Programming Contest (2010)

Problem 6: Base k Addition

Most peoples of the world use the decimal (or base ten) numeral system, in which the ten
symbols 0, 1, 2, ..., 9, called the decimal digits, are used for forming numerals. The contribution
made by each digit in a numeral depends not only upon its value (e.g., 5 vs. 7) but also upon
its position within the numeral. The rightmost position is the 1’s column; moving to the left
from there we encounter the 10’s, 100’s, 1000’s, etc., columns. Note that these are the powers
of ten. For example, the decimal numeral 7204 corresponds to the sum

720410 = (7-10%) + (2-10%) + (0-10%) + (4-10%)

(Notice that, to indicate a numeral’s base explicitly, we put it as a subscript to the right of the
numeral.)

There is nothing special about using 10 as the base, however. In a base 5 numeral, for example,
only the digits 0 through 4 may appear, and in such a numeral we find the 1’s, 5’s, 25’s, 125’s,
etc., columns, corresponding to the powers of five. Hence, the base 5 numeral 3042 represents
the number given by the sum

(3-5°)+(0-5%) + (4-5") + (2-5°)
in a manner completely analogous to the decimal numeral 7204 above.

Performing addition in base 5 (or in any other base) is completely analogous to how it is done
in base 10, too. For example, in base 5 we have

44032
+ 1341

100423

In the 1’s column, we have 25 4+ 15 = 219+ 119 = 319 = 35, so we record a 3 in that column. In
the 5’s column, we have 35 + 45 = 319 + 419 = 719 = 125, so we record 2 in that column and
carry the 1 to the 25’s column. In the 25’s column, we have (remembering the incoming carry)
15 + 05 + 35 = 119 + 010 + 310 = 410 = 45, so we record 4 there. In the 125’s column, we have
45 + 15 = 419 + 119 = 510 = 105, so we record 0 and carry the 1. And so on.

Develop a program that, given as input an integer k£, with 2 < k£ < 9, and two base k& numerals,
calculates their sum and expresses it as a base k numeral.

Input: The first line contains a positive integer n indicating how many instances of the problem
are to be solved. Each instance is described on three lines, the first of which contains the base
and the next two of which contain two numerals of that base, one per line, each having at most
thirty digits.

10



Warning: The judges’ test data will include numerals representing numbers that are not in
the range of values covered by intrinsic data types (e.g., int, long, float, Integer, Real) in
languages such as C, C++, Java, or Pascal.

Output: For each pair of numerals to be added, generate a single line of output that identifies
their base, the two numerals (separated by a plus sign), an equals sign, and their sum. (See

the sample output below.)

Sample input:

10
33468294890
7502

2

111110001
110100101010011
6

543052
242441

9

543052
242441

Resultant output:

In base 10, 33468294890 + 7502 = 33468302392

In base 2, 111110001 + 110100101010011 = 110101101000100
In base 6, 543052 + 242441 = 1225533

In base 9, 543052 + 242441 = 785503

11



