Name ______ Date _____ Class ____

During a 20-minute trip, a car travels at various velocities. Figure 1 is a graph of these different velocities. Use the graph and the formulas that follow to answer questions 1 through 13.

FIGURE 1.

$$velocity = \frac{distance}{time} \qquad average \ velocity = \frac{final \ velocity + initial \ velocity}{2}$$
$$acceleration = \frac{final \ velocity - initial \ velocity}{time}$$

- 1. The graph compares
 - a. distance and time
 - b. speed and distance

- c. velocity and distance
- d. velocity and time
- 2. During the trip portion labeled R, the car is
 - a. not moving
 - b. accelerating

- c. decelerating
- d. not changing in velocity
- 3. The car is accelerating during portions
 - a. R and W
- b. Q, S, and T
- c. O. S. and V
- d. V and W

- 4. Acceleration and deceleration are shown by
 - a. the letters on the graph
 - b. the slope of the lines

- c. the vertical line labeled "Velocity"
- d. the length of each labeled line
- 5. The velocity of the car at 5 minutes is
 - a. 800 m/min
- b. 1200 m/min
- c. 1800 m/min
- d. 400 m/min²
- 6. The highest rate of deceleration occurs during trip portion
 - a. T

b. U

c. S

d. Q

- . 7. The rate of acceleration of the car at 8 minutes is
 - a. 1500 m/min²
- b. 170 m/min²
- c. 120 m/min²
- d. 200 m/min²

- 8. The velocity of the car at 12 minutes is
 - a. 0 m/min
- b. 700 m/min
- c. 350 m/min
- d. 300 m/min